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Not everything that can be counted counts;
and not everything that counts can be counted;
Albert Einstein (1879-1955)
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CONSTRAINT-BASED MINING OF FREQUENT

ARRANGEMENTS OF TEMPORAL INTERVALS

PANAGIOTIS PAPAPETROU

ABSTRACT

The problem of discovering frequent arrangements of temporal intervals is studied. It

is assumed that the database consists of sequences of events, where an event occurs dur-

ing a time-interval. The goal is to mine temporal arrangements of event intervals that

appear frequently in the database. The motivation of this work is the observation that in

practice most events are not instantaneous but occur over a period of time and different

events may occur concurrently. Thus, there are many practical applications that require

mining such temporal correlations between intervals including the linguistic analysis of an-

notated data from American Sign Language as well as network and biological data. Two

efficient methods to find frequent arrangements of temporal intervals are described; the

first one is tree-based and uses depth first search to mine the set of frequent arrangements,

whereas the second one is prefix-based. The above methods apply efficient pruning tech-

niques that include a set of constraints consisting of regular expressions and gap constraints

that add user-controlled focus into the mining process. Moreover, based on the extracted

patterns a standard method for mining association rules is employed that applies differ-

ent interestingness measures to evaluate the significance of the discovered patterns and

rules. The performance of the proposed algorithms is evaluated and compared with other

approaches on real (American Sign Language annotations and network data) and large

synthetic datasets.
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Chapter 1

Introduction

Sequential pattern mining has received particular attention in the last decade (Agrawal

and Srikant, 1994; Agrawal and Srikant, 1995; Ayres et al., 2002; Bayardo, 1998; Zaki,

2001; Fei et al., 2001; Pei et al., 2002; Han et al., 2000a; Seno and Karypis, 2002; Yan

et al., 2003; Leleu et al., 2003; Han et al., 2000b; Wang and Han, 2004). The objective

is to extract patterns from a set of sequences of instantaneous events which satisfy some

user-specified constraints. These constraints can vary from just a support threshold, that

defines frequency, to a set of gap, window (Zaki, 2000; Srikant and Agrawal, 1996), or

regular expression constraints (Garofalakis et al., 1999), that push more user-controlled

focus into the mining process. Despite advances in this area, nearly all proposed algo-

rithms concentrate on the case where events occur at single time instants. However, in

many applications events are not instantaneous; they instead occur over a time interval.

Furthermore, since different temporal events may occur concurrently, it would be useful

to extract frequent temporal patterns of these events. In this paper the goal is to develop

methods that discover temporal arrangements of correlated event intervals which occur

frequently in a database.

There are many applications that require mining such temporal relations. One po-

tential application is for analysis of the multiple gestures that occur, in parallel, on the

hands and on the face and upper body, to express linguistic information. In signed lan-

guages, lexical information is expressed primarily through movements of the hands and

arms, whereas critical grammatical information is expressed non-manually, through such

1
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> Who drove the car, who?


(Lowered eyebrows)


(
Wh
-
Question)


(
Wh
-
Word)


time


(Rapid head shake)
 (Rapid head shake)


(
Wh
-
Word)


(Lowered eyebrows)


Figure 1·1: An ASL example.

behaviors as raised or lowered eyebrows, modifications in eye aperture or gaze, repeated

head gestures (nods, shakes) or head tilt, as well as expressions of the nose or mouth. For

example, the canonical marking of a wh-question (a question containing a word such as

’who’, ’what’, ’when’, ’where’, or ’why’) includes lowered brows slightly squinted eyes oc-

curring over a predictable domain (either the question sign or the whole clause constituting

the question), and there is frequently a slight rapid head-shake co-occurring with the wh-

phrase (Neidle and Lee, 2006). Although much is known about the linguistic significance

of certain non-manual markings carrying critical syntactic information, there are others

whose functions remain to be studied and more fully understood. Pattern detection could

ultimately contribute to discovery of the significance of some of these non-manual behav-

iors. The annotated ASL corpus used for this research was produced by linguists as part

of the American Sign Language Linguistic Research Project ((Neidle et al., 2000; Neidle,

2003; Neidle and Lee, 2006)) using SignStream(TM) ((Neidle et al., 2001; Neidle, 2002a)).

The annotations identify start and end times for: the manual ASL signs (represented by

English-based glosses), part of speech for those signs, plus grammatical interpretive labels

indicating clusters of non-manual expressions that serve to mark particular syntactic func-

tions (such as wh-questions, negation, etc.) as well as the gestures themselves (e.g., raised

eyebrows, wrinkled nose, rapid head shake). See ((Neidle, 2002b)) for further information

about the annotation conventions that were used.

Another application is in network monitoring, where the goal is to analyze packet

and router logs. Consider Figure 1·2 for example, which shows two groups of machines
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communicating with each other via two routers. In this case an event label is the source

and destination IP and the event interval corresponds to the duration of the communication

between the two machines. Multiple types of events occurring over certain time periods

can be stored in a log, and the goal is to detect general temporal relations of these events

that with high probability would describe regular patterns in the network, that could be

used for prediction and intrusion detection.

Moreover, interval-based events can be identified in the human gene. More specifically,

DNA is a sequence of items (nucleotides) defined over a four-letter alphabet, i.e. Σ =

{A, C, G, T}. Regions of high occurrence of a nucleotide or combination of nucleotides,

known as poly-regions, can be defined over DNA. The detection of frequently overlapping

poly-regions could lead the biologists to a variety of useful observations concerning the

evolution of different genes and their contribution to protein construction. To the best of

our knowledge, the first general approach to mine frequent arrangements of poly-regions

in DNA is introduced in (Papapetrou et al., 2006).

Most existing sequential pattern mining methods are hampered by the fact that they

can only handle instantaneous events, not event intervals. Nonetheless, such algorithms

could be retrofitted for the purpose, via converting a database of event intervals to a

transactional database, by considering only the start and end points of every event interval.

An existing sequential pattern mining algorithm could be applied to the converted database,

and the extracted patterns could be post-processed to produce the desired set of frequent

arrangements. However, an arrangement of k intervals corresponds to a sequence of length

2k. Hence, this approach will produce up to 22k different sequential patterns. Moreover,

post-processing will also be costly, since the extracted patterns consist of event start and

end points, and for each event interval all the relations with the other event intervals must

be determined. Therefore, it is essential to develop interval-based algorithms that can

efficiently mine frequent patterns and rules from interval-based data.

The main contributions in this paper include:

• a robust definition of temporal relations between two event intervals that is noise
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(A, B)
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time


Figure 1·2: A network example.

tolerant and through the use of constraints eliminates the ambiguity of Allen’s defi-

nitions (Allen and Ferguson, 1994),

• a formal definition for the problems of mining frequent temporal arrangements and

arrangement rules of event intervals in an event interval database using temporal and

structural constraints,

• a prefix-based approach and an efficient algorithm for mining frequent arrangements

of temporally correlated events using depth first search in an enumeration tree of

temporal arrangements,

• a further improvement of the mining process with the incorporation of temporal and

structural constraints,

• an efficient algorithm for mining arrangement rules from the extracted patterns based

on user-specified interestingness measures and constraints, and

• an extensive experimental evaluation of these techniques and a comparison with a

standard sequential pattern mining method, SPAM (Ayres et al., 2002), using both

real and synthetic data sets,

The remainder of this thesis is organized as follows: Chapter 3 presents the related work

on sequential pattern mining, interval mining and temporal mining. Also it gives a brief
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overview of the existing interestingness measures for association rules. Chapter 2 provides

the problem formulation along with the appropriate definitions and background. Chapter

4 gives an extensive description of two tree-based approaches and a prefix-based approach

for mining frequent arrangements of temporally correlated event intervals. Also, in the

same Chapter, an efficient algorithm for extracting the set of top k arrangement rules is

described. Chapter 5 describes the experimental evaluation, and Chapter 6 concludes the

thesis, providing directions for future research.



Chapter 2

Background

Some basic definitions on temporal logic are presented, followed by a sufficient background

on interestingness measures for association rules. Finally, the problems of constraint-based

mining of frequent arrangements of temporal intervals and constraint-based mining of the

top K interesting association rules from a database of interval-based events are formulated.

2.1 Event Interval Temporal Relations

Seven types of temporal relations between two event intervals are considered. Using these

relations, general arrangements can be defined. However, the methods presented in this

thesis are not limited to these relations and can be easily extended to include more types

of temporal relations, as the ones described by Allen in (Allen and Ferguson, 1994) and

also later on in (Freksa, 1992).

Consider two event-intervals A and B. Furthermore, assume that the user specifies a

threshold ε used to define more flexible matchings between two time instants. The following

relations are studied (see also Figure 2·1):

• Meet(A,B): In this case, B follows A, with B starting at the time A terminates,

i.e. te(A) = ts(B)± ε. This case is denoted as A ∼ B and we say that A meets B.

• Match(A,B): In this case, A and B are parallel, beginning and ending at the same

time, i.e. ts(A) = ts(B)± ε and te(A) = te(B)± ε. This case is denoted as A||B and

we say that A matches B.

6
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A[t
start
, t
end
]
 B[t
start
, t
end
]


(a)
   Meet of A and B


A[t
start
, t
end
]


B[t
start
, t
end
]


(d)


A[t
start
, t
end
]
 B[t
start
, t
end
]


(g)


Contain of A and B


Follow of A and B


+/- e


A[t
start
, t
end
]


B[t
start
, t
end
]


(e)
  Left Contain of A and B


A[t
start
, t
end
]


B[t
start
, t
end
]


(f)
  Right Contain of A and B


+/- e
 +/- e


A[t
start
, t
end
]


B[t
start
, t
end
]


(c)
 Overlap of A and B


A[t
start
, t
end
]


B[t
start
, t
end
]


(b)
 Match of A and B


+/- e
+/- e


Figure 2·1: Basic relations between two event-intervals: (a) Meet, (b)
Match, (c) Overlap, (d) Contain, (e) Left-Contain, (f) Right-Contain, (g)
Follow.

• Overlap(A,B): In this case, the start time of B occurs after the start time of A,

and A terminates before B, i.e. ts(A) < ts(B), te(A) < te(B) and ts(B) < te(A).

This case is denoted as A|B and we say that A overlaps B.

• Contain(A,B): In this case, the start time of B follows the start time of A and the

termination of A occurs after the termination of B, i.e. ts(A) < ts(B) and te(A) >

te(B). This case is denoted as A > B and we say that A contains B.

• Left-Contain(A,B): In this case, A and B start at the same time and A terminates

after B, i.e. ts(A) = ts(B) ± ε and te(A) > te(B). This case is denoted as A | > B

and we say that A left-contains B.

• Right-Contain(A,B): In this case, A and B end at the same time and the start

time of A precedes that of B, i.e. ts(A) < ts(B) and te(A) = te(B) ± ε. This case is

denoted as A > | B and we say that A right-contains B.

• Follow(A,B): In this case, B occurs after A terminates, i.e. te(A) < ts(B). This

case is denoted as A → B and we say that B follows A.
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A
 B


(a)
  Meet or Overlap?


A


B


(d)
 Match or Contain?


A


B


(e)
  Left Contain or Contain?


A


B


(f)
  Right Contain or Contain?


A


B


(c)
 Match or Overlap?


A
 B


(b)
  Meet or Follow?


Figure 2·2: Lack of Robustness in Allen’s Relations.

2.2 Robustness and Ambiguity Issues

Most existing interval-based mining algorithms use Allen’s approach (Allen and Ferguson,

1994) to describe relations between event intervals. Because of the limit in the accuracy of

demarcating the temporary boundaries of events, there can be variability in these bound-

aries. Unfortunately, Allen’s relations are hampered by the fact that they cannot capture

this variability, thus they are not robust and can be ambiguous. This issue has also been

noted in (Moerchen, 2006) and is illustrated in Figure 2·2. Consider, for instance, the case

where the actual relation between two event intervals is meet, but due to noise it appears

as overlap as shown in Figures 2·2(a) and 2·2(b). Similarly, an actual match could appear

as overlap (Figure 2·2(c)) or contain (Figure 2·2(d)), and also, a left or right-contain

could show up as contain (Figures 2·2(e), 2·2(f)). Such errors can occur due to noisy data

and may have a negative influence on the extracted patterns.

The aforementioned deficiency in Allen’s relations is eliminated in our definitions by

the use of an ε threshold that makes Allen’s definitions more robust and noise tolerant.

Two observations can be made regarding ε. Notice that the meet relation is a subset of

the follow relation. To prevent any ambiguity, it is assumed that if two event intervals

are within a user-defined ε threshold, then their relation is meet, otherwise it is follow.

Similarly, left-contain and right-contain are subsets of contain and a clear distinction is

achieved again through the ε threshold. Thus, the use of ε in the meet, left-contain and

right-contain relations can efficiently handle “noisy” intervals.

In some applications, the user may not want to consider some of the above relations as
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Table 2.1: Subsets of Event Interval Relations
Relation Could also be counted as

meet follow
overlap

match left-contain
right-contain

contain
overlap

left/right-contain contain
overlap

mutually exclusive. Table 2.1 shows how these relations cannot be mutually exclusive. For

example, a match could also be counted as a left-contain, right-contain, contain and/or

overlap. Also, a left-contain or right-contain could be counted as a contain or an overlap

as well. Finally, a meet could also be counted as a follow or overlap. Thus, depending on

the application, a user might desire to: (1) collapse some relations, e.g. count left-contain

and right-contain as contain, or count each meet as follow, etc., (2) count them multiple

times, e.g. each overlap is also counted as left-contain and right-contain, or each match is

also counted as contain, or each meet is also counted as follow, etc.

Thus, the user has flexibility with respect to which of these options get chosen and

clearly it would be application specific. The user is given the aforementioned flexibility

through the implementation of a graphical user interface, which is relatively straightfor-

ward.

2.3 Arrangements and Arrangement Rules

Let E = {E1, E2, ..., Em} be an ordered set of event intervals, called event interval se-

quence or e-sequence. Each Ei is a triple (ei, tistart, tiend), where ei is an event la-

bel, tistart is the event start time and tiend is the end time. The events are ordered

by the start time. If an occurrence of ei is instantaneous, then tistart = tiend. An e-

sequence of size k is called a k-e-sequence. For example, let us consider the 5-e-sequence

shown in Figure 2·3. In this case the e-sequence can be represented as follows: E =

{(A, 1, 7), (B, 3, 19), (D, 4, 30), (C, 7, 15), (C, 23, 42)}. Finally, an e-sequence database D
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A


B


C
C


3
1
 4
 7
 15
 19
 23
 30
 42


D


time


Figure 2·3: An Example of an e-sequence.

= {E1, E2, ..., Ek} is a set of e-sequences.

In an e-sequence database there may be patterns of temporally correlated events; such

patterns are called arrangements. The definitions given in Section 2.1 can describe temporal

relations between two event intervals but they are insufficient for relations between more

than two. Consider for example the two cases in Figure 2·4. Case (a) can be easily expressed

using the current notation as: A|B → C. This is sufficient to determine that A overlaps

with B, C follows B and C follows A. On the other hand, the expression for case (b), i.e.

A|B > C, is insufficient, since it gives no information about the relation between A and C.

Thus, we need to add one more operand to express this relation concisely. In order to define

an arrangement of more than two events we need to clearly specify the temporal relations

between every pair of its events. This can be done by using the “AND” operand denoted by

?. Therefore, the above example can be sufficiently expressed as follows: A|B?A|C?B > C.

Based on the previous analysis, we can efficiently express any kind of relation between any

number of event intervals, using the set of operands: R = {|, ||, >, | >,> |,∼,→} and ?.

Consequently, an arrangement A of n events is defined as A = {E , R}, where E is the

set of event intervals that occur in A, with |E| = n, and R = {R (E1, E2), R (E1, E3),

... , R (E1, En), R (E2, E3), R (E2, E4), ... , R (E2, En), R (En−1, En)}. R is the set

or temporal relations between each pair (Ei, Ej), for i = 1, ..., n and j = i + 1, ... , n,

and R (Ei, Ej) ∈ R defines the temporal relation between Ei and Ej . The size of an

arrangementA= {E , R} is equal to |E|. An arrangement of size k is called a k-arrangement.

For example, consider arrangement S′ of size 3 shown in Figure 2·4 (a). In this case E =

{A, B, C} and R = {R (A, B) = |, R (A, C) = →, R (B, C) = →}. The

absolute support of an arrangement in an e-sequence database is the number of e-sequences
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in the database that contain the arrangement. The relative support of an arrangement

is the percentage of e-sequences in the database that contain the arrangement. Given an

e-sequence s, s contains an arrangement A = {E , R}, if all the events in A also appear in

s with the same relations between them, as defined in R. Consider again arrangement S′

in Figure 2·4(a) and e-sequence s in Figure 2·3. We can see that all the event intervals in

S′ appear in s and further, they are similarly correlated, i.e. Overlap (A,B), Follow (B,C),

Follow (A,C). Thus, S′ is contained in or supported by s. Given a minimum support

threshold min sup, an arrangement is frequent in an e-sequence database, if it occurs in

at least min sup e-sequences in the database.

Itemset association rules have been thoroughly studied in many previous works in-

cluding (Srikant and Agrawal, 1996; Agrawal and Srikant, 1994). In these approaches an

association rule was defined among items that belong to a frequent itemset. A similar

definition was given in (Harms et al., 2002) for sequence association rules. Based on the

above work, we are going to define association rules for arrangements.

Given two arrangements Ai and Aj that have been mined from an e-sequence database

D, r : Ai ⇒Rij

λ, D Aj defines an arrangement rule between Ai and Aj , based on an

interestingness measure λ. This means that, given an arrangement A = {E , R} that is

frequent in D, we can break it into two arrangements Ai = {Ei, Ri}, Aj = {Ej , Rj} and

define a rule between them. Note that E is split into two sets Ei and Ej , whereas Ri and

Rj are defined based on R, and describe the temporal relations between the event intervals

in Ei and Ej respectively. Also, Rij defines the set of relations of the event labels Ei with

those in Ej .

2.4 Interestingness Measures

The use of interestingness measures, also known as quantitative measures, plays a very im-

portant role in the interpretation of the discovered arrangement rules. Many interestingness

measures have been proposed and studied, each of them capturing different characteristics.

In this section we give a brief overview of the most common quantitative measures and
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show how they can be used for mining arrangement rules.

Given a rule A ⇒RAB
λ, D B, the desired properties of λ are the following:

• Property 1: λ = 0, if A and B are statistically independent.

• Property 2: λ monotonically increases with |(A,B)|/|D|, when |A|/|D| and |B|/|D|
remain the same.

• Property 3: λ monotonically decreases with |A|/|D| (or |B|/|D|) when the rest of

the parameters, i.e. |(A,B)|/|D| and |B|/|D| or |A|/|D|), remain unchanged.

The above properties are studied in more detail in (Kamber and Shinghal, 1996; Hilder-

man and Hamilton, 2001) and the extent to which interestingness measures satisfy these

properties has been studied and is shown in (Tan et al., 2002). Two other properties of

interestingness measures are: monotonicity and anti-monotonicity (Agrawal and Srikant,

1994):

1. Monotonicity of an interestingness measure λ: An interestingness measure λ

is monotone, if for any two arrangements A and B (with A ⊆ B), λ(A) ≤ λ(B).

2. Anti-monotonicity of an interestingness measure λ: An interestingness mea-

sure λ is anti-monotone, if for any two arrangements A and B (with A ⊆ B),

λ(B) ≤ λ(A).

Given an arrangement rule: r : A ⇒RAB
λ, D B, we define cover(A) to be the number of

records in D that contain arrangement A over the size of the e-sequence database D, and

coverage(r) to be the cover of the antecedent arrangement A. In this thesis, we focus on

two anti-monotone interestingness measures: (1) support, (2) all-confidence, and four non

anti-monotone: (1) confidence, (2) leverage, (3) lift, and (4) conviction.
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2.4.1 Anti-monotone Interestingness Measures

Next, the definitions of two anti-monotone measures are given with respect to an arrange-

ment A and an event interval database D. Due to the anti-monotonicity property, these

measures can be applied on each node and can be used for efficient pruning.

• supp(A) = cover(A)

This is the most common quantitative measure among the frequent pattern mining

algorithms. An arrangement with high support guarantees high co-occurrence of

its event intervals in D and can produce interesting rules whose antecedent and

consequent arrangements are frequent in D.

• all-confidence(A) = supp(A)
max1≤k≤m{supp(Ak)}

The denominator is the maximum number of e-sequences in D that contain any sub-

arrangement of A. This states that all-confidence is in fact the smallest confidence

of any rule inferred from A.

2.4.2 Non Anti-monotone Interestingness Measures

There has been a great number of interestingness measures proposed and studied, that are

not anti-monotone. In this thesis we consider four of them. Next, we give their definitions

with respect to an arrangement rule r implied from an arrangement A that has been mined

from an event interval database D. Note, that since these measures are not anti-monotone,

they cannot be pushed “all the way” into the mining process. Thus, given an arrangement

rule r : A ⇒RAB
λ, D B, we have:

• confidence(r) = supp(r)
coverage(r)

The confidence of a rule typically expresses the conditional probability of the occur-

rence of the consequent B in an e-sequence in D, given that the antecedent A also

occurs in the e-sequence.



14

• lift(r) = supp(r)
supp(A)×supp(B)

Lift is a traditional association rule measure, and it is the ratio of the observed joint

frequency of A and B, and the expected frequency if they were independent. The

problem with this measure is the following: a rule with high lift, may be of little inter-

est since it may have low coverage, meaning that it applies in very few records of D. In

particular, since coverage(r) = supp(A), we have supp(r)
supp(A)×supp(B) = supp(r)

coverage(r)×supp(B) ,

and as coverage(r) ↓, lift(r) ↑.

• leverage(r) = supp(r) − supp(A)× supp(B)

Leverage measures the difference between the observed joint frequency of A and B
(i.e. support of r), and their expected frequency if they were independent. Some

useful bounds on leverage have been introduced in (Webb and Zhang, 2005) and are

used by the mining algorithms to efficiently prune the search space.

• conviction(r) = 1−supp(B)
1−confidence(r)

Conviction basically compares the probability of A appearing without B, assuming

independence, with the actual frequency of the appearance of A without B. A very

useful property of conviction is that it is monotone in confidence and lift, i.e.:

conviction(r) =
1− supp(B)

1− confidence(r)

=
1

supp(B) − supp(B)
supp(B)

1
supp(B) − confidence(r)

supp(B)

=
1

supp(B) − 1
1

supp(B) − lift(r)

and as we can see as lift(r) ↑, conviction(r) ↑.

2.5 Temporal and Structural Constraints

Frequency, however, does not always imply interestingness. A pattern can occur frequently

in the database but it may not hold interesting information to every user. For example,

if a user is very selective and wants to focus on certain patterns, the current formulation
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Figure 2·4: (a) S′ can be expressed with four operands and (b) S′′ cannot.

will yield an extremely unfair computational cost. Thus, some user-controlled focus (Garo-

falakis et al., 1999; Zaki, 2000) needs to be added into the mining process. In addition to

the support threshold, the user can also specify a set of constraints C that includes:

• A set Re of regular expression constraints: the mined arrangements should

follow the regular expressions defined in Re. Let ri ∈ Re be a regular expression of

size n; then ri is of the following form: A1 ∗ A2 ∗ A3 ∗ ... ∗ An, where Ai is an

arrangement and ∗ is a wildcard that stands for zero or more arrangements of any

form.

• A gap constraint Cg: two event intervals that take part in a follow relation should

be separated by at most Cg time units.

• A pair of overlap constraints Co = {C l
o, Cu

o }: the overlap of two event intervals

that take part in an overlap relation, is limited by Co. In fact, C l
o, Cu

o can be

seen as the lower and upper bound of an overlap relation. This means that if their

overlap is less than C l
o% then their relation is considered a meet ; if their overlap

exceeds Cu
o % then their relation is considered a left-contain. Given two event intervals

E1 = (e1, t1start, t1end) and E2 = (e2, t2start, t2end), their overlap is equal to

t1end − t2start, if t1start < t2start < t1end, otherwise it is zero; and the overlap percentage

is: overlap percentage = overlap
min{t1end − t1start, t2end − t2start}

.

• A pair of contain constraints Cct = {C l
ct, Cu

ct}: two event intervals that take

part in a contain, left-contain or right-contain relation, should have an overlap of at

most Cu
ct%. If their overlap exceeds this bound, their relation is considered a match,

whereas if it is less than C l
ct it is discarded.
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• A duration constraint Cd: each event interval should have a duration of at most

Cd units. If not, it is discarded.

2.6 Problem Formulation

Based on the above definitions we can now formulate the problem of constraint-based mining

of frequent arrangements of temporal intervals as follows:

Problem I: Given an e-sequence database D, a set of constraints C, and a support threshold

min sup, our task is to find set F = {A1,A2, ...,An}, where Ai is a frequent arrangement

in D and satisfies the constraints in C.

We can further extend the previous formulation to extract arrangement rules given an

interestingness measure λ. Also, a set of constraints CR is added to the previously defined

set of constraints C. CR contains a number of constraints for the arrangement rules:

1. a set of constraints for Rij that restricts the relations that connect the antecedent

and consequent arrangements.

2. a set of constraints for the set of event labels of the antecedent and consequent

arrangements.

Incorporating interestingness measures and the aforementioned constraints to C (we

define C′ = C ∪CR), we can formulate the problem of constraint-based mining of the top-K

interesting association rules as follows:

Problem II: Given a set {D, C′, λ, k, min sup}, where D is an e-sequence database, C′

is a set of constraints, λ is an interestingness measure, k is an integer and min sup is the

minimum support threshold that implies frequency, we want to mine the top k frequent

arrangement rules that satisfy C′ and maximize λ.
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The following Sections present a set of algorithms that deal with both problems. In

particular, a set of algorithms to solve Problem I is proposed, and then used to efficiently

solve Problem II by getting extended to include the new constraints and also mine rules

given an interestingness measure.



Chapter 3

Related Work

Next, the existing work on sequential pattern mining and on temporal mining is presented

and a brief overview of the existing interestingness measures that can be applied to the

extracted patterns and association rules is given.

3.1 Sequential Pattern Mining Algorithms

Current sequential pattern mining algorithms can be classified to seven different classes

with respect to: (1) the methods and data-structures used for the candidate sequence gen-

eration, (2) the pruning techniques used to accelerate the mining process, and (3) the final

output set that the algorithms are targeting (closed, or non-closed sequential patterns).

3.1.1 Apriori-based Algorithms

The first and simplest family of sequential pattern mining algorithms are the Apriori-based

algorithms and their main characteristic is that they apply the Apriori principle (Agrawal

and Srikant, 1994). The problem of sequential pattern mining was introduced in (Agrawal

and Srikant, 1995), along with three Apriori-based algorithms (AprioriAll, AprioriSome

and DynamicSome). At each step k, a set of candidate frequent sequences Ck of size k is

generated by performing a self-join on Fk−1; Fk consists of all those sequences in Ck that

satisfy a user-specified support threshold. The efficiency of support counting is improved

by employing a hash-tree structure.

A similar approach, GSP (Generalized Sequential Patterns), was developed in (Srikant

18
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and Agrawal, 1996) that pushes time constraints (maximum and minimum gaps between

the events) as well as window constraints into the mining process, and was proved to be

more efficient than its predecessors. At the same time, (Mannila et al., 1995) introduced

the idea of mining frequent episodes, i.e. frequent sequential patterns in a single long input

sequence, using a sliding window to cut the input sequence into smaller segments, and

employing a mining algorithm similar to that of AprioriAll. Notice, however, that in our

formulation we focus on finding frequent patterns across a set of input sequences (that

constitute a sequence database) and not across a single sequence.

Discovering all frequent sequential patterns in large databases is a very challenging

task since the search space is large. Consider for instance the case of a database with

m attributes. If we are interested in finding all the frequent sequences of length k, there

are O(mk) potentially frequent ones. Increasing the number of objects might definitely

lead to a paramount computational cost. Apriori-based algorithms employ a bottom-up

search, enumerating every single frequent sequence. This implies that in order to produce

a frequent sequence of length l, all 2l subsequences have to be generated. It can be easily

deduced that this exponential complexity is limiting all the Apriori-based algorithms to

discover only short patterns, since they only implement subset infrequency pruning by re-

moving any candidate sequence for which there exists a subsequence that does not belong

to the set of frequent sequences.

3.1.2 Tree-based Algorithms

A faster and more efficient candidate production can be achieved using a tree-like structure

(set-enumeration tree) (Bayardo, 1998) and traversing it in a depth-first search manner

to enumerate all the candidate patterns applying both subset infrequency and superset

frequency pruning.

The above idea was initially introduced for mining frequent itemsets, but was extended

for sequential patterns. An efficient approach, SPAM (Ayres et al., 2002), employs a se-

quence enumeration tree to generate all the candidate frequent sequences given the set



20

of event labels. Each level k of the tree contains the complete set of sequences of size k

(with each node representing one sequence) that can occur in the database. The nodes of

each level are generated from the nodes of the previous level using two types of extensions:

(1) itemset extension (the last itemset in the sequence is extended by adding one more

item to the set), (2) sequence extension (a sequence is extended by adding a new itemset

at the end of the sequence). The candidate sequences are enumerated by traversing the

tree using depth-first search. If an infrequent sequence is reached, the subtree of the node

representing that sequence is pruned (subset infrequency pruning). If a frequent sequence

is reached, then all its subsequences have to be frequent, thus the tree nodes representing

those sequences are skipped (superset frequency pruning). For efficient support count-

ing, a bitmap representation of the database is used, which further improves performance

over the lattice-based approaches (Zaki, 2001; Zaki, 2000; Leleu et al., 2003) discussed next.

3.1.3 Lattice-based Algorithms

Another class of sequential pattern mining algorithms includes those that use a lattice

structure (Davey and Priestley, 2002) to enumerate the candidate sequences efficiently.

Intuitively, a lattice can be seen as a “tree-like” structure where each node can have more

than one “father”. A node on the lattice that represents a sequence s, is connected to all

the pairs of nodes on the previous level that can be joined to form s. This is illustrated

in the following example: let s = {d, (bc), a}, then all the following nodes should be

connected to s on the lattice: {(bc), a}, {d, b, a}, {d, (bc)}, {d, c, a}, since each pair of

these subsequences can be joined to form s.

SPADE (Zaki, 2001) uses the above structure to efficiently enumerate the candidate

sequences. The basic characteristics of SPADE are the following: (1) it employs a vertical

representation of the database using id-lists, where each pattern is associated with a list

of database sequences in which it occurs. All frequent sequences can be enumerated via

temporal joins on the id-lists, (2) it uses a lattice-based approach to decompose the original

search space into smaller subspaces, which can be processed independently in main memory,
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(3) within each sub-lattice, two different search strategies (breadth-first and depth-first

search) are used for enumerating the frequent sequences.

An extension of SPADE, called cSPADE, was proposed in (Zaki, 2000), which allowed

a set of constraints to be placed on the mined sequences. These constraints were mainly:

(1) length and width constraints (the maximum allowed length and width of a pattern is

restricted), (2) gap and window constraints (similar to those of GSP), (3) item constraints

(the mining task should return patterns that contain only certain items), and (4) class

constraints (these constraints are applicable for classification of datasets where each input

sequence has a class label).

A similar algorithm, GO-SPADE (Leleu et al., 2003), was proposed later on, where the

idea of generalized occurrences was introduced. The intuition behind GO-SPADE is that

in a sequence database certain items can occur in a consecutive way, i.e. they may appear

in consecutive itemsets in the same sequence. To reduce the cost of the mining process,

GO-SPADE mainly tries to compact all these consecutive occurrences by defining a gen-

eralized occurrence of a pattern p as a tuple (sid, [min,max]), where sid is the sequence

id, and [min,max] corresponds to the interval of the consecutive occurrences of the last

event of p.

3.1.4 Algorithms with Regular Expression Constraints

Ignoring slight differences in the problem definition, the vast majority of the former algo-

rithms aim the discovery of frequent sequential patterns based on only a support threshold,

which limits the results to the most common or “famous” ones. Thus, a lack of user-

controlled focus in the pattern mining process can be detected that may sometimes lead

to an overwhelming volume of potentially useless patterns. A solution to this problem is

proposed in (Garofalakis et al., 1999), where the mining process is restricted by not only a

support threshold but also by user-specified constraints modelled by regular expressions.

More specifically, (Garofalakis et al., 1999) introduces the family of SPIRIT algorithms,

where a set of constraints C is pushed into the mining process along with a sequence
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database. Therefore, the minimum support requirement and a set of additional user-

specified constraints are applied simultaneously restricting the set of candidate sequences

produced during the mining process. To accomplish this, two different types of pruning

techniques are used: constraint-based and support-based pruning. The first uses a relaxation

C ′ of C ensuring that in every pass of the candidate generation all the candidate sequences

satisfy C ′. The second, tries to ensure that all the subsequences of a candidate sequence

that satisfy C ′ are present in the current set of discovered frequent sequences.

Another characteristic of the SPIRIT algorithms concerns anti-monotonicity. Consider

a given set of candidates C and a relaxation C ′ of C. In fact C ′is a weaker constraint

which is less restrictive, however all the sequences that satisfy C also satisfy C ′. C ′ is

anti-monotone, if all subsequences of a sequence satisfying C ′ are guaranteed to also sat-

isfy C ′. In such case, support-based pruning is maximized, since support information for

every subsequence of a candidate sequence in C ′ can be used for pruning. Moreover, if C ′

is not anti-monotone, the efficiency of both support-based and constraint-based pruning

depends on the relaxation C ′.

3.1.5 Prefix-based Algorithms

Another class of sequential pattern mining algorithms includes the prefix-based ones (Fei

et al., 2001; Wang and Han, 2004; Yan et al., 2003). In this case, the database is projected

with respect to a frequent prefix sequence and based on the outcome of the projection, new

frequent prefixes are identified and used for further projections until the support threshold

constraint is violated.

The main steps of a prefix-based algorithm are the following: (1) scan the database

for the frequent 1-sequences, (2) for each frequent 1-sequence s found in the previous step,

project the database with respect to s, (3) scan the projected database for locally frequent

items, (3) add each new frequent item to the end of the prefix and project the database

with respect to the new prefix, (4) repeat steps 3-4 for each new prefix, until the projected

database is of size less than the support threshold.
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3.1.6 Algorithms for Mining Closed Sequential Patterns

All algorithms described so far, mine the complete set of frequent sequences including their

subsequences. However, recent research and studies have presented convincing arguments

that only closed frequent sequences should be mined targeting more compact results and

higher efficiency (Zaki and Hsiao, 2002; Pei et al., 2000; Wang and Han, 2004; Yan et al.,

2003; Pasquier et al., 1999). Two of the most efficient algorithms for mining frequent closed

sequences BIDE (Wang and Han, 2004) and CloSpan (Yan et al., 2003) are based on the

notion of the projected database and use special techniques to limit the number of frequent

sequences and finally only keep the closed ones.

In particular, CloSpan follows the candidate maintenance-and-test approach, i.e. it first

generates a set of closed sequence candidates which is stored in a hash-indexed tree struc-

ture and then prunes the search space using Common Prefix and Backward Sub-Pattern

pruning (Yan et al., 2003). The main drawback of CloSpan is the fact that it consumes

much memory when there are many closed frequent sequences, since pattern closure check-

ing leads to a huge search space. Consequently, it does not scale very well with respect

to the number of closed sequences. In order to face this weakness, BIDE employs a BI-

Directional Extension paradigm for mining closed sequences, where a forward directional

extension is used to grow the prefix patterns and check their closure and a backward direc-

tional extension is used to both check the closure of a prefix pattern and prune the search

space. In overall, it has been shown that BIDE has surprisingly high efficiency, regarding

speed (an order of magnitude faster than CloSpan) and scalability with respect to database

size.

3.2 Temporal Mining and Association Rules

Up to this point, the events have been considered to be instantaneous. There have been sev-

eral approaches on discovering intervals that occur frequently in a transactional database

(Lin, 2003; Lin, 2002). In most cases, however, the intervals are unlabelled and no relations
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between them are considered. (Villafane et al., 2000) extends the sequential approach by

also including the contain relation introduced previously. To efficiently mine the arrange-

ments, it employs a containment graph representation that imposes a partial order on the

event intervals.

Extending earlier work on mining frequent episodes in a single sequence of events (Man-

nila et al., 1995; Mannila and Toivonen, 1996), there have been various approaches that

consider interval-based events. (Hoeppner, 2001; Mooney and Roddick, 2004; Hoeppner

and Klawonn, 2001) employ apriori-baeed techniques to find temporal patterns that occur

frequently in the input event sequence. Along with the frequent patterns, they extract

association rules and the latest applies some interestingness measures to evaluate their

significance. These measures, however, are not pushed into the mining process; they are

applied to the set of frequent patterns after the mining process has been completed.

Another approach that considers sequences of interval-based events in a database is

discussed in (Kam and Fu, 2000). In this case, the extracted patterns are limited to

some certain forms. Let Ai denote an interval-based event and relij the temporal relation

between events Ai and Aj , and let Ai relij Aj denote the temporal relation between Ai

and Aj . In (Kam and Fu, 2000) the extracted patterns are of the following two forms:

• Form 1: ((... (A1 rel12 A2) rel23 A3) ... rel(k−1)k Ak).

• Form 2: let X be a temporal relation of size 2 and Y be a pattern of Form 2, then

X relij Y is a temporal pattern of Form 2.

Notice that the aforementioned approaches are Apriori-based and do not consider any

temporal or structural constraints for the extracted arrangements. Furthermore, the event

interval relations used are not robust and cannot efficiently handle noisy data, i.e. noise at

the start and end-points of the intervals. To the best of our knowledge, the first tree-based

approach was proposed in (Papapetrou et al., 2005), where a tree-like structure was used

to enumerate the set of arrangements and efficiently mine the frequent ones.
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In the interim, there has been significant work on discovering association rules on se-

quential and temporal data. Association rules among items that belong to a frequent

itemset are defined in (Srikant and Agrawal, 1996; Agrawal and Srikant, 1994). Similar

definitions are given in (Harms et al., 2002) for sequence association rules, and in (Hoepp-

ner, 2001; Hoeppner and Klawonn, 2001) for association rules among interval-based events.

In the above works, the evaluation of the rules is achieved by the usage of interestingness

measures. The most common ones (introduced in (Agrawal and Srikant, 1994)) are support

and confidence. Using a non Apriori-based technique that avoids multiple database scans,

(E.Winarko and J.F.Roddick, 2005) achieved to efficiently mine arrangements and rules in

a temporal database. However, in their methods they do not consider any constraints for

the temporal relations and do not examine any measures for their rules other than the tra-

ditional confidence. Temporal association rules combine traditional association rules with

temporal aspects by using time stamps that describe the validity, periodicity, or change

of an association. (Oezden et al., 1998) studies the problem of mining association rules

that hold only during certain cyclic time intervals. It is argued that reducing the temporal

granularity can lead to the extraction of more interesting rules. In a same fashion, (Chen

and Petrounias, 1999; Abraham and Roddick, 1999) consider the discovery of association

rules in temporal databases and thus the extraction of temporal features of associated

items. The support of the rules is measured only during these intervals. Moreover, in

(Ale and Rossi, 2000), the lifetime of an item is defined as the time between the first and

the last occurrence and the temporal support is calculated with respect to this interval.

In this way, the extracted rules are only active during a certain time, and outdated rules

can be pruned by the user. Finally, (Lu et al., 1998) studies inter-transaction association

rules by merging all itemsets within a sliding time window inside a transaction, whereas in

(Tsoukatos and Gunopulos, 2001) efficient techniques for mining spatiotemporal patterns

are proposed.
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3.3 Interestingness Measures

There has been a variety of studies on other interestingness measures (Tan and Kumar,

2000) that provide more accurate results by removing redundancy and limiting the number

of extracted rules to the most interesting ones. (Omiecinski, 2003) proposes alternative

association rule measures for evaluating the importance of association rules in transactional

databases, whereas (Kamber and Shinghal, 1996) introduces some efficient techniques for

evaluating the interestingness of rules. (Hilderman and Hamilton, 1999) carried out a

survey on the existing interestingness measures and their significance in association rule

mining. In (Hilderman and Hamilton, 2001), a study on the performance of different

association rule measures is presented, where different measures are being used to rank

the extracted rules on various datasets and determine the appropriate measure for each

dataset. Moreover, (Tan et al., 2002) provides the intuition behind each interestingness

measure and gives the basic properties that effective rule measures should possess. It

further presents an analysis of the main characteristics of the most common rule measures

and suggests a technique for selecting the right one (most effective) for a given application.

Recent work (Webb, 2006) has proposed generic techniques that provide effective control

over the mining process that restricts the number of false rules. Finally, (Xin et al., 2006)

presents two algorithms for discovering interesting patterns where the mining process is

guided by the user’s interactive feedback. In particular, they employ a so called user-

specific interestingness measure thats consists of a ranking function and a model of prior

knowledge that has been defined by the user. Despite all the aforementioned studies there

has been yet no approach that considers interestingness measures on interval-based rules

other than the traditional support and confidence.

Finally, there has been some work on constraint-based mining of frequent itemsets,

where the goal is to mine the top k patterns that maximize an interestingness measure

(other than the typical support threshold) and satisfy a set of constraints (Webb and

Zhang, 2005). A similar approach is considered in this thesis; in our case however, we deal

with sequences of interval-based events instead of itemsets.
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To recap, there have been various approaches on mining frequent arrangements of tem-

poral intervals; most of them however, are Apriori-based, in some cases (Kam and Fu,

2000) the extracted patterns are limited to certain forms, and no constraints are consid-

ered. Furthermore, in most cases the extraction of arrangement rules is performed after

the detection of the frequent patterns and no attempt has been made to push it into the

mining process. Also, no other measure is used, except for the traditional support and

confidence, to evaluate the interestingness of each rule. Current algorithms target all rules

that satisfy the desired measures and do not incorporate any constraints regarding the

form of each rule. In this work, we present the first “tree-based” attempt to mine frequent

arrangements of temporal intervals, where an efficient method is developed that employs

a “tree-like” structure to enumerate the candidate set of arrangements. Furthermore, the

problem of extracting arrangement rules is being considered, and in our case, efficient

pruning techniques are applied and the notion of arrangement rules is generalized by in-

cluding constraints and other interestingness measures except for the traditional support

and confidence.



Chapter 4

Algorithms

A straightforward approach to mine frequent patterns from a database of e-sequences D

is to reduce the problem to a sequential pattern mining problem by converting D to a

transactional database D′. Without any loss of information, we can keep only the start

and end time of each event interval. For example, for every event interval (ei, ts, te)

in D, that describes an event ei starting at ts and ending at te, we only keep ts and te

in D′. Now, we can apply an efficient existing sequential pattern mining algorithm, e.g.,

SPAM (Ayres et al., 2002), to generate the set of frequent sequences FS in D′. Every

pattern in FS should be post-processed to be converted to an arrangement. However,

this approach has two basic drawbacks, regarding cost and efficiency: (1) post-processing

can be very costly, since in the worst case the number of frequent patterns in FS will be

exponential (O(2|N |)), where N is the number of distinct items in the database, and the

cost of converting every pattern f in FS to an arrangement is O(|f |2), (2) the patterns in

FS will carry lots of redundant information; and this redundancy will still be present even

if we apply an efficient closed sequential pattern mining algorithm (Wang and Han, 2004).

Next, we describe three efficient algorithms for mining frequent arrangements of tem-

poral intervals that address the previous problems. The first two, employ a tree-based

enumeration structure, like the one used in (Bayardo, 1998; Zaki, 2001; Ayres et al., 2002).

The first algorithm uses BFS to generate the candidate arrangements, whereas the second

uses DFS. Although the BFS-based approach is equivalent to Apriori, the algorithm is

further extended to include temporal and structural constraints. The third algorithm em-

28
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Database D


id
 e-sequence


1


2


4


3


A [1, 3],  B [1, 3], A [6, 12], B [8, 11], C [ 9, 10]


A [1, 2],  B [2, 6], A [10, 12], B [11, 15], C [14, 17]


B [1, 3],  A [4, 7], A [9, 11], B [11, 12] , C [12, 14]


B [1, 5],  A [6, 14], B [7, 10], C [8, 9]


Figure 4·1: An e-sequence database D.

ploys a prefix-growth approach, similar to (Fei et al., 2001). However, the cost of projection

in the case of the event interval database is very high which makes the algorithm inefficient.

4.1 The Arrangement Enumeration Tree

The tree-based structure used by the first two algorithms is called arrangement enumera-

tion tree. An arrangement enumeration tree is shown in Figure 4·2. Each level k consists

of a set of nodes, denoted as N(k), that hold the complete set of k-arrangements. Let nk
i

denote node i on level k, where i indicates the position of nk
i in the k-th level based on

the type of traversal used by the algorithm. For every node nk
i ∈ N(k), we consider the

arrangement A={E , R} defined by the node, based on which, an intermediate set of nodes

(as shown in Figure 4·2) is created, denoted as Mk(nk
i ), linking to nk

i . Each node in Mk(nk
i )

represents a temporal relation in R. In the case shown in Figure 4·2, E = {A, B, C}
and on level 1, N(1) = {{A}, {B}, {C}}, i.e. we have one node for every item in E .

Then, performing temporal joins on the nodes of level 1, the set of the 2-arrangements of

Level 2 is generated, with N(2) = {{A, A}, {A, B}, {A, C}, {B, A}, {B, B}, {B, C},
{C, A}, {C, B}, {C, C}}, and for each node n2

i set Mk(nk
i ) is defined. In general, on

level k: (1) N(k) is created by joining the nodes in N(k-1) with those in N(1), (2) for

every node nk
i , Mk(nk

i ) is defined and then linked to nk
i . The arrangement enumeration

tree is created as described above, using the set of operands defined in chapter 2 and it is

traversed using either breadth-first or depth-first search.
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NULL


{A, B}
 {A, C}
 {B, A}
 {B, C}
 {C, A}
 {C, B}
{A, A}
 {B, B}
 {C, C}


A->A
 AB
 A|B
 A||B
 A-B
 A->B
 AC
 A|C
 A||C
 A-C
 A->C


{A}
 {B}
 {C}


{A, A, A}
 {A, A, B}
 {A, B, A}
 {A, B, B}
 {A, B, C}
{A, A, C}


AB*A|C*B||C
AB*AC*B|C
 A||B*A->C*BC
 ...


Figure 4·2: An arrangement enumeration tree.

4.2 BFS-based Approach

In this section we consider an event interval mining algorithm that uses the arrangement

enumeration tree described above to generate the set of candidate arrangements and then

prunes those that are not frequent or cannot lead to any frequent arrangement if expanded.

The algorithm traverses the tree using breadth first search which is equivalent to the

Apriori-based approaches described in section 3.1. The main characteristic of this algorithm

is that a set of constraints has been incorporated into the mining process.

First, we introduce the ISIdList structure, that attains a compact representation of

the intervals and a relatively low join cost. More specifically, an ISIdList is defined for

every arrangement generated by this process. The head of the list is the representation of

the arrangements using R and the event labels comprised in it; each record is of type (id,

intv-List), where id is the e-sequence id in D that supports the arrangement, and intv-List

is a double-linked list of all the time intervals during which the arrangement occurs in the

corresponding e-sequence in D.

Consider, for example, an e-sequence database D with three unique items A, B and C,

as in Figure 4·1. The ISIdLists of A and B is shown in Figure 4·3. Let Fk denote the com-

plete set of frequent k-arrangements and Ck the set of candidate frequent k-arrangements.
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A


esid
 Intv-List


1


1


2


2


3


3


4


[1,   3]


[7, 10]


[1,   2]


[10, 12]


[4,   7]


[9, 11]


[6, 14]


B


esid


1


1


2

2


3


3


4


[1,   3]


[8,   9]


[2,   6]


[11, 15]


[1,   3]


[11, 12]


[1,   5]


Intv-List


4
 [7, 10]


Figure 4·3: ISId-Lists for items A and B.

Our algorithm will first scan D to find F1, i.e. the complete set of 1-arrangements. To

achieve this, a scan will be performed on D for every event type ei. If the number of

e-sequences in D that contain an interval of ei satisfies the support threshold, ei will be

added to F1, and its ISIdList will be updated accordingly.

In order to generate the candidate 2-arrangements, we use the arrangement enumeration

tree described above to get the nodes of level 2, along with the set of their correspond-

ing intermediate nodes. Then, removing those that do not satisfy the support threshold

constraint we get set F2 of frequent 2-arrangements.

Moving to the next levels, i.e. generating the set of frequent k-arrangements, we traverse

the nodes on level k-1. Note that these nodes correspond to the set of frequent (k-1)-

arrangements. For every node nk−1
i , a new node nk

i is created on level k, along with the

set of intermediate nodes Mk(nk
i ), one for every type of correlation of the items in nk

i .

For every node in Mk(nk
i ) an ISIdList is created that contains: (1) the set of items of nk

i ,

(2) the types of 2-relations between them, (3) for every type of 2-relation a pointer to the

intermediate nodes on Level 2 that correspond to that 2-relation. Also, note that if an

arrangement is found to be infrequent, then the node in the tree that corresponds to that

arrangement is no further expanded.

The above process is more clear through the following example: consider database D in

Figure 4·1 and assume that min sup = 2. Scanning D and filtering with min sup, we get

F1 = {{A}, {B}, {C}}. Based on F1 and the enumeration tree, set F2 of the frequent 2-

arrangements is generated. In our case, we get all the possible pairs of the 1-arrangements

in F1, i.e. N(2), and for every pair of events in the arrangements, D is scanned to get all the
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input : D: a database of e-sequences.

min sup: minimum support threshold.

C: a set of constraints.

λ: an interestingness measure.

k: an integer.

output : The set F of the frequent arrangements in D that satisfy C.
The set AR of the top k rules that satisfy the constraint λ.

F = ∅;
foreach event type ei do

if ei exists in D then

C1 = C1 ∪ ei;

end
end

F1 = {ei ∈ C1 | ei.cupport ≥ min sup , Cd is satisfied};
while Fk−1 6= ∅ do

N(k) = generate candidates (N(k − 1), N(2));

// The next set of nodes on the tree is determined, following BFS traversal

foreach node nk
i ∈ N(k) do

Mk(nk
i ) = generate krelations();

// this function generates the nodes in Mk, along with their ISIdLists.

// for the case where k = 2, it ensures that Cct, Cg and Co are satisfied.

Ck = Mk;

foreach candidate c ∈ Ck do

if c.support < min sup and c does not satisfy Re then

Ck.remove(c); // removes c from Ck.

prune subtree(c); // prunes subtree(c).

end
end

Fk = Ck;

extract rules(Ck, λ);

end
end

Algorithm I: A BFS-based algorithm for discovering the complete set of frequent temporal ar-
rangements and the top k arrangement rules in a database of e-sequences given a set of con-
straints and an interestingness measure.

types of relations between them, i.e. M2. If these relations satisfy the support threshold

they are added to F2. Then we produce F3 based on F2. The algorithm first creates N(3),

following a breadth-first search traversal, along with the set of intermediate nodes. Every

node in M3 that satisfies min sup is added to F3, which in our case consists of only one

arrangement: {(A, B, C), (>, >, >)}. F1, F2 and F3 are shown in Figure 4·6. The

main steps of this method are described in Algorithm I, considering an input database D,

a minimum support threshold min sup, an interestingness measure λ, a set of constraints

C and an integer k.

Furthermore, during the above process, the set of constraints C described in chapter 2



33

is applied taking into account that the efficiency of pruning depends on the degree to which

the constraints are pushed into the mining process. As regards the regular expression con-

straints and using the approach proposed in (Garofalakis et al., 1999), one option is to push

the constraints all the way into the mining algorithm. In this case, the generation of the

enumeration tree is limited by the regular expressions in Re, i.e. only the nodes that corre-

spond to those expressions are created. Another option is to apply the regular expressions

after the generation of each arrangement and before the application of any interestingness

measure, i.e. when an arrangement is created, we first check whether it satisfies Re, and

then apply the rest of the constraints along with the interestingness measure that the user

required. As far as gap, overlap and contain constraints are concerned, they are applied

at the second step of the algorithm, when the set of frequent 2-arrangements is created.

Finally, the duration constraint is applied at the first step of the algorithm, when the set

of frequent 1-arrangements is created.

Regarding the rule generation, two approaches can be followed: one is to extract the

rules after the mining process is completed, i.e. given the complete set F of frequent ar-

rangements and the user-specified interestingness measure λ, we apply a technique similar

to the one proposed in (Agrawal and Srikant, 1994) to extract the rules implied from F

and maximize λ. The second and more efficient approach is to push the interestingness

measure into the mining process as “deep” as possible. This, however, depends on whether

the interestingness measure satisfies the anti-monotonicity property. If so then it can be

incorporated into the mining process; if not then the first approach is employed. More

details on this step are given in section 4.6.

4.3 DFS-based Approach

In a BFS approach the arrangement enumeration tree is explored in a top-bottom manner,

i.e. all the children of a node are processed before moving to the next level. On the

other hand, when using a depth-first search approach, we must all sub-arrangements on a

path must be explored before moving to the next one. A DFS-based approach for mining
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frequent sequences has been proposed in (Tsoukatos and Gunopulos, 2001). Based on

this, the previous algorithm can be easily modified to use a depth-first search candidate

generation method. This can be done by adjusting function generate candidates() so that

it follows a depth-first search traversal. Consider the previous example: our algorithm will

first generate node n1
1 = {A} followed by M(n1

1), then n2
1 = {A, A} followed by M(n2

1), and

so on. Again, the constraints are applied in a similar fashion as in BFS, and the extraction

of the rules is described in section 4.6.

The advantage of DFS over BFS is that DFS can very quickly reach large frequent ar-

rangements and therefore, some expansions in the other paths in the tree can be avoided.

For example, say that a k-arrangement A is found to be frequent. Then, the set of all sub-

arrangements of A will also be frequent according to the Apriori principle. Thus, those

expansions can be skipped, reducing the cost of computation. To do so, one more step is

added to Algorithm 4.2: when a node is found to contain a frequent arrangement, each

sub-arrangement is added to F and the corresponding expansions are made on the tree.

However, in BFS there is more information available for pruning. For example, knowing the

set of 2-arrangements before constructing the set of 3-arrangements can prevent us from

making expansions that will lead to infrequent arrangements. This information, however,

is not available in DFS.

4.4 Hybrid DFS-based Approach

A hybrid event interval mining approach is considered, based on the following observa-

tion: since the ISIdLists contain pointers to the nodes on the second Level of the tree,

a DFS-based approach would be inappropriate since for every node nk
i we would have to

scan the database multiple times to detect the set of 2-relations among the items in that

node. In the BFS-based approach these nodes will already be available, since they have

been generated in the second step of the algorithm. Thus, we use a hybrid DFS approach

that generates the first two levels of the tree using BFS and then follows DFS for the rest

of the tree. This would compensate for the multiple database scans discussed above, since
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the set of frequent 2-arrangements will already be available thereby eliminating the need

for multiple database scans.

4.5 A Prefix-based Approach

A prefix-based algorithm for mining frequent arrangements of temporal intervals is pre-

sented. However, we will show that in the case of interval-based events, a prefix-growth

approach is quite inefficient, especially when the size of the e-sequences is large and there

is repetition of the same event labels in the same e-sequence.

Consider an arrangement A = {E , R} and an e-sequence S. The projection of S with

respect to A is the remaining part S′ of S, if the first occurrence of A in S is removed.

Figure 4·4 shows an example of a projection. Next, we define the projection of an e-

sequences database with respect to an arrangement. Using the definition given in (Fei

et al., 2001) for the sequential approach, we can define the projection of an e-sequence

database D with respect to an arrangement A as the e-sequence database D′ produced

from D, if each record (e-sequence) in D is projected with respect to A. However, this

definition is incomplete. The problem is illustrated by the example shown in Figure 4·5,

where an e-sequence database of two records is considered. Following the basic steps of the

prefix-growth mining algorithms with support threshold min sup = 2, we have:

1. Scan D for frequent 1-arrangements: in our case we detect A and C.

2. Project the database with respect to each of the arrangements found at Step 1.

3. The projection with respect to A is shown in Figure 4·5 and will yield one new locally

frequent arrangement, C, since the support threshold equal to 2.

4. The result of Step 3 is the detection of A → C in the first e-sequence and A | C in

the second.

5. Another projection follows with respect to C, but it produces an empty e-sequence

database and therefore the mining process is terminated.
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C


Prefix Arrangement A:


Figure 4·4: An Example of a Projection.

As it can be seen, we failed to get A | C with support 2. In fact, A | C was produced

after the first projection, as shown in Figure 4·5, but it was not considered frequent since

its support was erroneously calculated as 1. This example shows that when an e-sequence

database is projected with respect to a prefix arrangement, finding only the first occur-

rence of the arrangement may hide some patterns and prevent the mining algorithm from

detecting them.

Thus, given an e-sequence database D and an arrangement A, the projected e-sequence

database D′ with respect to A can be obtained from D, if from each record in D we find

every occurrence (not just the first one) of A and project with respect to each one of them.

It can be seen that such an approach can lead to a huge computational cost, since for each

database record, all the combinations of the occurrences of a prefix should be examined

and not just the first one.

In our experimental evaluation we show the performance of the prefix-growth approach

and compare it with the BFS and DFS approaches presented previously.

4.6 Applying Other Interestingness Measures

In the previous sections, three efficient methods are presented for mining the complete set

F of frequent arrangements of an e-sequence database D. What remains to be done is to

discover the set of top k arrangement rules that maximize the given interestingness measure

λ in D. A very important issue here, is how deep we can push λ into the mining process.



37

A


C


time
Prefix Arrangement: A

Support Threshold: 2


A


A


time


C


time


A


C


Detected

Arrangements


A


C


Detected twice

(
Correct
)


Record 1


Record 2
 A


C


C


A


time


Support = 1

Correct


Support = 1

Wrong


Figure 4·5: An Example of an e-sequence database of two records and a
projection that does not work.

This, in fact, depends on the properties of λ and more specifically on anti-monotonicity.

Next, we present two approaches to handle λ based on whether λ is anti-monotone or not.

4.6.1 Handling Non Anti-monotone Interestingness Measures

If an interestingness measure λ does not preserve the anti-monotonicity property, we have

two options: (1) infer the arrangement rules from the extracted frequent arrangements after

the mining process is completed (this process is similar to the one described in (Agrawal

and Srikant, 1994) for mining association rules), (2) find an upper-bound for λ and push

it into the mining process as much as possible.

The first option is quite straightforward. Given F and D, for each Ai ∈ F , with

Ai = {E , R}:

1. E is split into two sets E1 and E2, such that E1 ∪ E2 = E and E1 ∩ E2 = NULL.

Based on R, two arrangements are defined: A1 = {E1, R1} and A2 = {E2, R2}.

2. Apply λ on r : A1 ⇒R12
λ, D A2.

3. If r satisfies λ and CR of C′, add it into the set of valid rules, else discard r.

4. If the set of rules has reached the desired size K, the rule with the smallest λ value

(let it be λ min) is removed and replaced by the new rule, as long as the new rule’s
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value is greater than λ min. If not, then the new rule is discarded.

The above algorithm will produce the complete set of top K arrangement rules that

maximize the constraint λ. Moreover, based on the mining process and the constraints

applied during the extraction of the frequent patterns we have ensured that these rules will

satisfy the set of constraints C′ − CR.

However, it would be more efficient if we could push λ into the mining process and use

it for faster and more efficient pruning. The only problem is that λ is not anti-monotone.

One way to overcome this issue and achieve some pruning is to find a bound value (up-

per or lower) bound λ for λ, such that when an arrangement A is reached on the tree, if

λ(A) < Upperbound λ, then none of the rules implied by A can lead to an arrangement

that satisfies λ, or if λ(A) > Lowerbound λ and Lowerbound λ > λ, then all rules implied

by A can lead to an arrangement that satisfies λ. One such bound was used in (Bayardo

et al., 1999) for association rules and the following claim extends it for the case of arrange-

ment rules:

Claim 1: If all-confidence(A) ≥ λ, then all rules implied by A can lead to an ar-

rangement that satisfies confidence, and thus they are not examined.

Proof: Since all-confidence of an arrangement is the minimum confidence of any rule

inferred from it, the Claim is straightforward.

Another sort of pruning would be to find a way to imply whether a rule satisfies λ by

calculating a simpler form of the rule that reduces the computational cost. There have been

several works on bounding interestingness measures for frequent itemset mining (Bayardo

et al., 1999; Webb and Zhang, 2005; Omiecinski, 2003). These bounds were used to prune

the search space during the rule extraction process. In this thesis we borrow some of those

bounds and infer some new ones to incorporate some of the non anti-monotone measures

into the mining process.
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1. Bounding Confidence:

Given an arrangement A, for any rule r : A1 ⇒R12
λ, D A2 implied from A, where λ

in this case stands for confidence, we have the following claim:

Claim 2: If cover(A2)
cover(A1) < min Confidence, then r does not satisfy λ.

Proof: Straightforward from the definition of confidence.

2. Bounding Leverage:

Given an arrangement A, for any rule r : A1 ⇒R12
λ, D A2 implied from A, where λ

in this case stands for leverage, we have the following claim:

Claim 3: If cover(A1) > 1− min Leverage
cover(A1)

or cover(A2) > 1− min Leverage
cover(A2) , then r

does not satisfy λ.

Proof: Shown in (Webb and Zhang, 2005) for association rules and it can be easily

extended for arrangement rules.

4.6.2 Handling Anti-monotone Interestingness Measures

In this subsection we consider the case where the interestingness measure λ preserves the

anti-monotonicity property. If λ is anti-monotone, it can be pushed much “deeper” into

the mining process. When an arrangement A is reached on the enumeration tree, if there

exists no rule r inferred from A satisfying λ, then the subtree of the node representing A
is pruned, since it cannot produce any interesting rule. However, if there exists a set of

rules RA for which λ holds, then the mining process continues with the subtree. In this
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case though, the rules that are going to be discovered in the subtree depend on RA, based

on which, the rule extraction process can be accomplished faster by excluding those rules

that will definitely not satisfy λ. Let RA = {r1, r2, ..., rn} be the set of rules inferred

from the arrangement at node n on the tree, where ri : Ai ⇒RAiBi
λ, D Bi. When n is

expanded, for each new arrangement C = {E , R}, we follow the same process as in the

previous section to discover the new arrangement rules, however the search is limited by

RA as follows:

1. E is split into two sets E1 and E2.

2. If there is no arrangement Ai = {Ei, Ri} in the antecedent part of any rule in

RA, such that E1 ⊇ Ei, then due to the anti-monotonicity property, E1 cannot be the

antecedent part of any rule inferred from C; thus this split is skipped.

As it can be seen, an anti-monotone interestingness measure λ can be pushed into the

mining process and used for more efficient pruning and thus lead to a faster rule extrac-

tion. Algorithm II shows how we can extract the set of top K rules, given set of frequent

arrangements.
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input : D: a database of e-sequences.

Ck: the set of candidate k-arrangements.

λ: an interestingness measure.

output : The set AR of top k arrangement rules in D that satisfy λ.

AR = ∅;

foreach Ai = {E, R} ∈ Ck do

if λ is anti-monotone and Ai does not satisfy λ then

prune the subtree beyond Ai;

continue;

end

apply bounds on Ai;

if λ(Ai) ≤ Upperbound λ then

continue;

end

// apply lower bound, if such bound exists

foreach e ∈ E do

split E into two sets E1 and E2;

prune split();

// based on the set of rules RA defined in the previous level

// prune the split if necessary.

based on R: define A1 = {E1, R1} and A2 = {E2, R2};
apply λ on r : A1 ⇒D

λ A2;

if r does not satisfy λ then

continue;

end

if |AR| ≥ k then

min = minimum λ-value in AR;

if r.λ ≥ min then

remove rule with λ = min;

AR = AR ∪ r;

end
end

end
end

Algorithm II: Extracting the set of arrangement rules given a set of candidate arrangements.



42

Meet (A, B)


esid


2


3


[1,   2] ,  [2,   6]


Intv-List


 [9, 11] ,  [11, 12]


A


esid
 Intv-List


1


1


2


2


3


3


4


[1,   3]


[7, 10]


[1,   2]


[10, 12]


[4,   7]


[9, 11]


[6, 14]


B


esid


1


1


2


2


3


3


4


[1,   3]


[8,   9]


[2,   6]


[11, 15]


[1,   3]


[11, 12]


[1,   5]


Intv-List


4
 [7, 10]


C


esid


1


2


3


4


[9, 10]


[14,  17]


[12,  14]


[8,  9]


Intv-List


Follow (A, 
 B)


esid


1


2


[1,   3] ,  [8,   9]


Intv-List


 [1,   2] ,  [11, 15]


3
  [4,   7] ,  [11, 12]


Contain (B, C)


esid


1


4


[8,  11] ,  [9,  10]


Intv-List


 [7,  10] ,  [8,    9]


Follow (A, C)


esid


1


2


[1,  3] ,  [9,  10]


Intv-List


 [1,  2] ,  [8,    9]


2
  [10, 12] ,  [8,    9]


3
  [4, 7] ,  [10,  12]


3
  [9, 11] ,  [12,  14]


Follow (B, C)


esid


1


2


[1,  3] ,  [9,  10]


Intv-List


 [2,  6] ,  [8,    9]


3
  [1,  3] ,  [12, 14]


4
  [1,  5] ,  [8,    9]


Contain (A, C)


esid


1


4


[6,  12] ,  [9,  10]


Intv-List


 [6,  14] ,  [8,    9]


{A, B}


{A, C}


{B, C}


Contain (A, 
 B)


esid


1
 [6, 12] ,  [8, 11]


Intv-List


4
 [6, 14] ,  [7, 10]


Follow (A, A)


esid


1


2


[1,   3] ,  [6,  12]


Intv-List


 [1,   2] ,  [10, 12]


3
  [4,   7] ,  [9,  11]

Follow (B, B)


esid


1


2


[1,   3] ,  [8,  11]


Intv-List


 [2,   6] ,  [11,  15]


3
  [1,   3] ,  [11,  12]


4
  [1,   5] ,  [7,  10]


{A, A}


Follow (B, A)


esid


1


2


[1,   3] ,  [6,  12]


Intv-List


 [2,   6] ,  [10,  12]


3
  [1,   3] ,  [3,   7]


3
  [1,   3] ,  [9,  11]


4
  [1,   5] ,  [6,  14]


{B, A}


{B, B}


{A, B, C}


Contain (A, B) * Contain (A, C) * Contain (B, C)


esid


1


4


Intv-List


Figure 4·6: The set of frequent 2 and 3-arrangements.



Chapter 5

Experimental Evaluation

5.1 Experimental Setup

Experiments that compare the performance of our algorithms with SPAM (Ayres et al.,

2002) are presented. 1 All experiments have been performed on a 2.8Ghz Intel(R) Pen-

tium(R) 4 dual-processor machine with 2.5 gigabytes main memory, running Linux with

kernel 2.4.20. The algorithms have been implemented in C++, compiled using g++ along

with the -O3 flag, and their run time has been measured with the output turned off. Note

that for SPAM, the post-processing time of converting the sequential patterns to arrange-

ments has not been counted. Also, as mentioned earlier, SPAM is tuned as follows: for

every event interval we keep only the start and end time; as for the postprocessing phase,

the frequent arrangements are extracted from the sequential patterns as described in the

same section. The patterns found by SPAM consist of a set of start and end points of

event intervals, which are converted to arrangements at the postprocessing phase. SPAM

manages to discover the same patterns extracted by our algorithms, but, as expected, it

produces a great number of redundant patterns.

For our experimental evaluation we have used both real and synthetic datasets. Next,

we present an analysis of our experimental evaluation, first by comparing our algorithms

with respect to their run time and then by showing their performance for each of the in-

terestingness measures described in Section 2.4.

1The code was obtained from: http://himalaya-tools.sourceforge.net/Spam/.
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5.1.1 Experiments on Real Data

We have performed a series of experiments on two real datasets. One was an annotated

database of ASL utterances, which is available online at: http://www.bu.edu/asllrp/.

The other was a sample network dataset of ODFlows taken from Abilene, which is an In-

ternet2 backbone network, connecting over 200 US universities and peering with research

networks in Europe and Asia. Next we present a detailed description of our experiments

on each dataset.

Experiments on the ASL SignStream Database

The first series of experiments have been performed on the ASL database created by the

National Center for Sign Language and Gesture Resources at Boston University. The Sign-

Stream(TM) database used in this experiment consists of a collection of 884 utterances,

where each utterance associates a segment of video with a detailed transcription. Non-

manual markings play a crucial role in the grammar of ASL (Baker-Shenk, 1983; Coulter,

1979; Liddell, 1980; Neidle et al., 2000), thus for our experiments we focused only on: spe-

cific non-manual gestures (e.g., raised eyebrows, head tilt forward), functional identification

of clusters of these non-manual gestures that carry syntactic meaning (e.g., ’wh-question’,

’negation’), and part-of-speech identifications of manual signs (e.g., verb, wh-word), each

one occurring over a time interval. The overall list of field names and labels included in

the database are given in Table 5.1.

We first tested our algorithms on subsets of sentences from the database: those that

contained marking of a wh-question, and another that contained marking of negation.

Our goal was to detect all frequent arrangements that occurred during wh-questions and

negative sentences. In these two datasets, called Dataset 1 and Dataset 2 respectively,

the number of e-sequences was 73 and 68, with an average number of items per sequence

equal to 32 and 26 respectively. Since all four algorithms produce the same results, in our

experiments we compare their run time. As shown in Figures 5·2(a) and 5·2(b), Hybrid
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Figure 5·1: Some Frequent Patterns of Datasets 1, 2 and 3.

DFS outperformed both BFS and SPAM for supports less than 30%. On average, Hybrid

DFS was approximately twice as fast as BFS and almost three times faster than SPAM.

In many cases, the performance of the prefix-growth approach was very poor, as it was

predicted in the analysis of Section 4.5. We tested the qualitative performance with respect

to the setting of parameter ε, where varied between 2 and 6 instants. In our case, low values

of ε gave the most meaningful results, since the amount of noise in the ASL dataset was

limited to a small number of frames. For higher values of ε, the detected relation types

changed, and as a result the number of extracted frequent arrangements decreased, hiding

many of the interesting patterns. For all experiments presented in this section, ε = 3.

Next, our algorithms were tested on the whole Signstream(TM) database that contained

884 utterances with an average e-sequence size of 29 items per e-sequence. We refer to

this as Dataset 3. The algorithms have been tested for various supports and have been

compared in terms of run time. The experimental results in Figure 5·2(c) show that in

terms of run time, the Hybrid DFS-based approach outperforms the BFS-based especially

in small supports. In both cases SPAM starts with a run time between that of BFS and

Hybrid DFS and for small supports the run time increases dramatically. The prefix-growth

approach is again very poor.

The results produced by our algorithms have been examined and evaluated by lin-

guists who had been involved in collecting the ASL data and producing the annotations

for this dataset 2. According to their feedback, our algorithms managed to detect a set of

2Carol Neidle and Robert G. Lee, of Boston University.
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Table 5.1: List of Field Names and Labels
Fields Field Names Field Labels

Head position head pos: tilt fr/bk hp: tilt fr/bk s
head pos: turn hp: turn

head pos: tilt side hp: tilt side
head pos: jut hp: jut

Head movement head mvmt: nod hm: nod
head mvmt: shake hm: shake

head mvmt: side to side hm: side< − >side
head mvmt: jut hm: jut

Body body lean body lean
body mvmt body mvmt
shoulders shoulders

Eyes, Nose, and Mouth eye brows eye brows
eye gaze eye gaze

eye aperture eye apert
nose nose

mouth mouth
English mouthing English mouthing

cheeks cheeks
Neck neck neck

Grammatical information negative negative
wh question wh question

yes-no question yes-no question
rhetorical question rhq

topic/focus topic/focus
conditional/when cond/when

relative clause rel. clause
role shift role shift

subject agreement subj agr
object agreement obj agr

adverbial adv
Part of Speech POS POS

Non-dominant POS POS2
Gloss Fields main gloss main gloss

non-dominant hand gloss nd hand gloss
Text Fields English translation english
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ASL patterns that have been already known: for example, the strong correlation between

wh-question marking and lowered eyebrows. Similar correlations were found between the

occurrence of what had been labelled as ”negative” marking and the non-manual behaviors

that comprise this marking (such as side-to-side head shake). Similarly, it was unsurprising

that wh-words co-occurred with the non-manual markings associated with wh-questions.

Nonetheless, it is good that our approaches independently found known correlations. Also,

some other discovered patterns were considered to be trivial (e.g., that the onset of a be-

havior preceded the behavior itself) or in some cases, an artifact of the selection criterion

used to define the sample of data under consideration. For example, within the set of nega-

tive sentences, verbs frequently co-occurred with marking of negation (whereas this would

not be true of verbs in non-negative sentences). For example, a “verb” would always occur

in a “negation”, or a “wh-word” is always included in a “wh-question”. Unfortunately,

due to the limited size of the dataset, we did not manage to find any patterns not already

known to the linguists; however, the above evaluation demonstrated the correctness of our

algorithms. In Figure 5·1 we can see some of the most frequent arrangements detected in

Datasets 1, 2, and 3.

Applying Interestingness Measures on the ASL Datasets

The main motivation behind the application of interestingness measures during the mining

process was to reduce the number of extracted patterns to the most interesting ones (for

the user), removing most of the trivial cases described previously. All six interestingness

measures presented in Section 4.6 have been applied to the ASL Datasets, leading to the

discovery of different sets of rules that maximize each one of them. The basic observation

from the extracted patterns on the ASL database was that applying only the support

threshold yielded a huge number of redundant patterns that do not provide any useful

information. Therefore, except for the support we applied all the interestingness measures

described previously. Table 5.2 shows the number of rules extracted by our algorithms for

each of the three ASL Datasets. As we can see, lift, confidence and conviction produced
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Table 5.2: Number of Extracted Rules from Datasets 1, 2, 3, and 4
λ Support λ d/set 1 d/set 2 d/set 3 d/set 4

Lift 0.5 0.5 46 14 2 87
Lift 0.4 0.5 187 149 53 241
Lift 0.3 0.5 453 47 155 786

Conviction 0.5 0.5 29 47 13 68
Conviction 0.4 0.5 112 47 16 142
Confidence 0.5 0.5 46 14 2 81
Confidence 0.4 0.5 148 53 14 251
Leverage 0.4 0.3 6 1 6 25
Leverage 0.4 0.2 25 3 12 43

All-Confidence 0.5 0.5 46 15 15 84
All-Confidence 0.4 0.5 54 53 59 122
All-Confidence 0.3 0.5 67 56 64 143

an interesting number of rules, whereas the number of rules that maximize leverage and

all-confidence was pretty small. In Figure 5·3 we present some of the top patterns in the

ASL dataset with regard to each interestingness measure. Notice that the first column of

the figure gives the complete arrangement that takes part in the rule, the second column

shows the antecedent arrangement, the third column shows the consequent arrangement

and the fourth column gives the value of each interestingness measure.

The application of interestingness measures managed to remove trivial cases and pre-

serve those already known to the linguists. In our case lift and conviction had the best

performance among all the measures we examined. Leverage also did a very good job

in removing trivial rules, however it also removed a great number of known rules, and in

many cases the number of extracted rules was extremely small. Our experimental evalua-

tion showed that the combination of interestingness measures and the efficient arrangement

mining algorithms can potentially provide more meaningful results. Nonetheless, an eval-

uation by experts is always needed to determine the most effective measure for a given

application.

Experiments on Network Data

Our algorithms have also been tested on a network dataset of 960 e-sequences with an

average e-sequence size of 100 items per e-sequence. The data has been obtained from
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a collection of ODFlows obtained from Abilene, that consists of 11 Points of Presence

(PoPs), spanning the continental US. Three weeks of sampled IP-level traffic flow data

were collected from every PoP in Abilene for the period December 8, 2003 to December 28,

2003. We have selected two routers that were shown to have a high communication rate

with each other, and have monitored the IP connections from one (LOSA: router in LA)

to the other (ATLA: router in Altanta) for three days. An e-sequence in our dataset is the

set of IP connections from LOSA to ATLA for every 15 minutes. Due to the huge number

of IP addresses, we have selected 200 IPs that appear most frequently in these three days.

The dataset that resulted from the above process is called Dataset 4.

Our experiments focused only on run time for the same reasons described earlier. In a

qualitative experiment, the parameter ε was tuned to vary between 3 and 15. Due to the

nature of the dataset, the number of extracted patterns was huge. As before, the number

and type of extracted patterns varied with respect to ε; however, the most interesting ones

were obtained for ε = 10. In this case, “interestingness” means that the patterns were

meaningful (from a network point of view), and described an expected communication

behavior of the two routers. The run time comparison of the four algorithms is shown

in Figure 5·2(d), and it is quite similar to that of the ASL datasets; again Hybrid DFS

outperforms the other algorithms in low supports. In this case however, the number of

extracted patterns is larger, due to the high averaage e-sequence size.

Applying Interestingness Measures on the Network Dataset

As far as the arrangement rules are concerned, all six interestingness measures have been

applied and a great number of rules have been extracted, most of which were interesting

(from the point of view described earlier). In Table 5.2 we can see the number of rules

generated by each interestingness measure. The main observation here is that the number

of rules generated for the network dataset by each measure is greater than that for the

ASL datasets. This is expected due to the nature of the network dataset, i.e. the average

e-sequence size is larger, and the number of relations (and thus arrangements) is greater,
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Figure 5·2: Results on Real Datasets: (a) ASL Dataset 1: |S|: 73, |A|: 52, |E|:
400.; (b) ASL Dataset 2: |S|: 68, |A|: 26, |E|: 400.; (c) ASL Dataset 3: |S|: 884,
|A|: 102, |E|: 400.; (d) Network Dataset: |S|: 960, |A|: 100, |E|: 200 (where |S|
denotes the size of the dataset, |A| the average sequence size), and |E| the number
of distinct items in the dataset.

due to the high communication rate in the network.

5.1.2 Experiments on Synthetic Data

Due to the relatively small size of the current SignStream database, we have generated

numerous synthetic datasets to test the efficiency of our algorithms.

Synthetic Data Generation

The following factors have been considered for the generation of the synthetic datasets:

(1) number of e-sequences, (2) average e-sequence size, (3) number of distinct items, (4)

density of frequent patterns. Using different variations of the above factors we have gener-

ated several datasets. In particular, our datasets were of sizes 200, 500, 1000, 2000, 5000

and 10000, with average sequence sizes of 3, 10, 50, 100 and 150 items per e-sequence.
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Figure 5·3: Some of the discovered rules in Dataset 1 and Dataset 2.
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Moreover, we have tried various numbers of distinct items, i.e. 400, 600 and 800. Also, we

have considered different densities of frequent patterns. We first created a certain number

of frequent patterns that with medium support thresholds of 20% (sparse), 40% (medium

density) and 60% (dense) would generate a lot of frequent patterns and then added random

event intervals on the generated sequences.

Experimental Results

The experimental results have shown that Hybrid DFS clearly outperforms BFS, and es-

pecially in low support values and large database sizes Hybrid DFS is twice as fast as BFS.

Regarding the performance of SPAM, we have concluded that in medium support values

and small database sizes SPAM performs better than BFS but worse than Hybrid DFS,

whereas in small support values and large datasets BFS outperforms SPAM. We compared

the four algorithms on several small, medium and large datasets for various support values.

The results of these tests are shown in Figure 5·4. As expected, SPAM performs poorly in

large sequences and small supports. This behavior is expected since for every arrangement

produced by BFS and Hybrid DFS, SPAM generates all the possible subsets of the start

and end points of the events in that arrangement. As the database size grows along with

the average e-sequence size, SPAM will be producing a great number of redundant fre-

quent patterns that yield to a rapid increase of its run time. In all cases, the prefix-growth

algorithm performs very poorly. In medium supports and small datasets it can still do

better than SPAM, but in smaller supports and larger datasets its performance decreases

dramatically.
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Figure 5·4: Results on Synthetic Datasets: (a) Dataset 1: |S|: 1000, |A|: 10,
|E|: 400, frequent patterns of medium density.; (b) Dataset 2: |S|: 1000, |A|: 20,
|E|: 600, sparse frequent patterns.; (c) Dataset 3: |S|: 1000, |A|: 50, |E|: 800,
dense frequent patterns.;(d) Dataset 4: |S|: 2000, |A|: 10, |E|: 400, frequent pat-
terns of medium density.;(e) Dataset 5: |S|: 2000, |A|: 20, |E|: 400, frequent
patterns of medium density.;(f) Dataset 6: |S|: 5000, |A|: 20, |E|: 400, dense
frequent patterns.;(g) Dataset 7: |S|: 5000, |A|: 50, |E|: 400, dense frequent pat-
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Chapter 6

Conclusions

We have formally defined the problem of constraint-based mining of frequent temporal

arrangements of event interval sequences and presented three efficient methods to solve

it. The first two approaches use an arrangement enumeration tree to discover the set

of frequent arrangements. The DFS-based method further improves performance over

BFS by reaching longer arrangements faster and hence eliminating the need for examining

smaller subsets of these arrangements. The prefix-growth approach is poor in performance,

since the number of projections can be really huge, especially when the input e-sequences

have repetitions of the same event label. We further extended our algorithms by pushing

constraints into the mining process. These constraints provide a more user-specified focus

on the extracted patterns. Moreover, except for the support threshold, we have applied

other interestingness measures and focused on mining the top k arrangement rules that

maximize a given interestingness measure. Our experimental evaluation demonstrates the

applicability and usefulness of our methods.

An interesting direction for future work is to develop an efficient algorithm for mining

closed arrangements. In this case however, a prefix-based approach, like BIDE (Wang and

Han, 2004), would be extremely costly. Therefore, we should come up with a method to

produce the complete set of closed arrangements that will employ more efficient projections

or use different techniques to prevent the paramount cost of multiple projections described

previously. Furthermore, another direction for future work is to mine partial orders of

temporal arrangements and closed temporal arrangements. The notion of mining partial

54
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orders of sequential patterns has been introduced in (Mannila and Toivonen, 1996) and an

interesting approach has been recently proposed for closed sequential patterns in (Casas-

Garriga, 2005). However, these methods again assume that the events are instantaneous.

Last but not least, our algorithms could be applied on biological data, such as genes of

different organisms (Papapetrou et al., 2006). The ultimate goal would be to extract

frequent arrangements of nucleotide regions and produce interesting rules. These patterns

could be further used to determine various features of different groups of organisms and

possibly detect mutations or tandem repeats.

Another extension is to consider e-sequences that include categorical domains. Suppose

we have a set of event intervals that correspond to a certain treatment for a disease and

also a categorical attribute that describes the result of the treatment, i.e. whether the

patient was cured or not. Being able to mine arrangements in such e-sequences could give

valuable information for the proper medical treatment of patients.
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