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Problem 
 
 

 

 

Bottleneck of Aprriori: candidate generation 
 
 

• Huge candidate sets: 
 

 

-104 frequent 1-itemsets will generate more than 107 candidate 2-itemsets  
 
 

-To discover a frequent pattern of size 100, e.g., {a1, a2,��., a100}, one needs to 
generate  2 100 ~   1030   candidates. 

 
 
 

• Multiple scans of the database 
 
 
 

 
 



Key contributions 
 
 
 

• A novel compact data structure, called frequent pattern tree. 
 
 

 

• FP- tree- based pattern fragment growth mining method. 
 

 

• Search technique is a portioning-based divide and conquers method. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Relevant Prior Work 
 
 

�Transaction Reduction: A transaction that does not contain any frequent  
 
k-itemsets cannot contain any frequent (k+1) itemsets. Therefore such a 
  
transaction can be removed. 
 
�Partitioning the database: The partitioning technique requires just two scans to  
 
mine the frequent itemsets. 
 
 Divide database into non-overlapping partitions. Get itemsets with support greater  
 
than minimum support for each partition. 
  
 

 
 
 
 
 
 



 
Frequent Pattern Tree 

 
 

• Frequent Pattern Tree consists of one root labeled as null, a set of item prefix sub 
trees as the children of the root, and a frequent �item header table. 

 
• Each node in the item prefix sub tree consists of three fields: item-name, count and 

node link where--- item-name registers which item the node represents, count 
registers the number of transactions represented by the portion of path reaching this 
node, node link links to the next node in the FP- tree. 

 
• Each entry in the frequent-item header table consists of two fields item name and 

head of node link, which points to the first node in the FP-tree carrying the item-
name. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Algorithm 1(FP-tree construction) 

 
 
 

1) Scan the transaction database DB once. Collect the set of frequent items F and 
their supports. Sort F in support descending order as L, the list of frequent items. 

 
 

2) Create the root of an FP-tree, T, and label it as null. For each transaction in the 
database do the following. 

 
 

- Select and sort the frequent item in each transaction according to the order of L 
Let the sorted frequent item list be [p|P], where p is the first element and P is the 
remaining list. Call insert for each item insert ([p|P], T). 

 
 

- insert function  
 
 
 
 
 



insert ([p|P], T) 
 
{ 
 
// Check if T has a child N where N.item-name=p.item- 
 
name then increment N count by 1. 
 
//else create a new node with count 1,its parent linked to T,  
 
and its node-link be linked to nodes with the same item- 
 
name via node-link structure 
 
//call insert till P is non-empty. 
 
} 
Cost analysis of FP-tree construction O (|no of frequent 
 
items in Transaction|). 
 
Now our FP tree has the complete information for frequent  
 
pattern mining. 
 



 
Example 

 
Transaction Example (from assignment #2, we picked 10  transactions with minimum support of 3) 
 

TID  Items in Basket (Ordered) Frequent 
Items 

100  2 7 11 13 14 16 31 35 36 2 16 35 14 7
200  2 4 20 23 28 37 44 56 60 2 4 37 
300  2 10 16 20 23 26 33 37 72 2 16 10 37
400  2 16 24 26 27 30 33 35 51 2 16 35 
500  2 4 7 9 10 17 51 56 87 2 4 10 7
600  2 10 11 21 24 27 29 40 45 2 10  
700  3 4 11 14 16 18 29 35 43 4 16 35 14 18 43
800  3 7 18 19 21 25 26 32 36 18 7  
900  4 13 14 18 37 40 43 50 67 4 14 18 37 43

1000  4 10 31 32 35 43 45 51 65 4 10 35 43
 
 
 
 
 
 
 
 



Frequency Count of items (by id): 
Item ID  frequency count 

2 6 
4 5 
16 4 
10 4 
35 4 
14 3 
18 3 
37 3 
43 3 
7 3 

 

 
 
 
 
 
 
 
 
 
 



FP-Tree Generation 
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Mininig Frequent Patterns using FP-tree 
 
 
 

Explore Compact information stored in FP-tree and develop complete  
 
set of frequent pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Algorithm 2 
 

Input: constructed FP-tree 
 
Output: complete set of frequent patterns 
 
Method: Call FP-growth(FP-tree, null). 
 
procedure FP-growth(Tree,α) 
 
{ 
 
if  Tree contains a single path P 

then for each combination do generate pattern β ∪  α with support  = minimum support 
of nodes in β. 

Else 
 For each header ai in the header of Tree do{ 
  Generate pattern β = ai  ∪  α with support = ai..support; 
  Construct β�s conditional pattern base and then  β�s conditional FP TreeTree β 
  If Tree β <> null 
  Then call FP-growth(Tree β  , β,)} 
}  

 
 



 
 

ITEM  Conditional 
patterns base 

Conditional FP-Tree frequent patterns generated 

7  { (2:1, 16:1, 35:1, 
14:1),  

(2:1, 4:1, 10:1), 
(18:1) } 

{ (2: 2) }| 7 2 7 : 2 

43  { (4:1,16:1, 35:1, 
14:1, 18:1), 

(4:1, 14:1, 18:1, 
37:1), 

(4:1, 10:1, 35:1) } 

{ (4:1, 35:1, 14:1, 18:1),
(4:1, 14:1, 18:1), 
(4:1, 35:1) } | 43 

4 43:2, 35 43:2, 14 43 :2, 18 43:2, 
 4 35 43:2, 4 14 43:2, 4 18 43:2, 14 18 43:2, 
 4 14 18 43 :2 

37  {2:1, 16:1, 10:1}, 
{2:1, 4:1},  

{4:1, 14:1, 18:1} 

{ (2: 2, 4:1), (4:1) } | 37 2 37:2, 4 37:2 

18  {4:1, 16:1, 35:1, 
14:1}, {4:1, 14:1} 

{ (4:2, 14:2) } | 18 4 18:2, 14 18:2, 4 14 18:2 

14  {2:1, 16:1, 15:1},  
{4:1, 16:1, 35:1}, 

{4:1} 

{ (4: 2) } | 14 4 14:2 

35  {2:2, 16:2},  {4:1, 
16:1} , {4:1, 10:1} 

{ (2:2, 16:2), (4:2) } | 35 2 35:2, 16 35:2, 4 35:2, 2 16 35:2 

10  {2:1, 16:1}, {2:1, 
4:1}, {4:1} 

{ (2:2, 4:1), (4:1) } | 10 2 10:2, 4 10:2 

16   {2:3}, {4:1} { (2:3) } | 16 2 16:3 
4  {2:2} {2:2} | 4 4, 2 : 2 
2  0 0 ------ 



 

Comparison of FP-growth and Apiori 

 
 
 
 
 



Opinion 
 

 

- Compare to Apriori-like algorithm, it is difficult to implement FP-Tree on actual 
coding because of the tree structure. 

 

- In case of large database, it is a good candidate to use for short and long patterns 
because FP-growth scales much better than Apriori.  It becomes very obvious when the 

�support threshold� goes down. 
 
- FP-tree is constructed the way that the higher frequent items are closer to the root 

(upper portion).  Therefore, from a �searching� or �scanning� point of view, it is very 
easy to select (mining) the items with high threshold by dropping the lower portion of 
the tree. 

 
 
 



 


