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Pattern Matching

Let VWV and T be (set of) strings generated over a finite alphabet A.

We call Y the pattern and T the text. The text T is of length n and is
generated by a probabilistic source.

We shall write
T =Ty...T,.
The pattern YV can be a single string

W:wl...wm, ’UJZEA

or a set of strings
W = {Wla"‘ﬂwd}
with VW, € A" being a set of strings of length m;.



Basic Parameters

Two basic questions are:

e how many times YV occurs in T,
e how long one has to wait until ¥ occurs in T'.

The following quantities are of interest:
O, (W) — the number of times W occurs in T
OW) =#{i: T, , ., =W, m<i<n}.
Wy — the first time YW occurs in T';

Wy := min{n : Tn_erl = W}.

n

Relationship:
Ww>n << O0,(W)=0.



Various Pattern Matching

(Exact) String Matching

In the exact string matching the pattern WW = w;...w,, IS a given
string (i.e., consecutive sequence of symbols).

Generalized String Matching

In the generalized pattern matching a set of patterns (rather than a
single pattern) is given, that is,

W:(W07W17°'°7Wd)7 W’LEAm’L

where VV; itself for i+ > 1 is a subset of A™: (i.e., a set of words of a given
length m;).
The set W, Is called the forbidden set.

Three cases to be considered:

Wy = ) — one isinterested in the number of patterns from YV occurring
in the text.

Wy # ) — we study the number of VW;, i > 1 pattern occurrences
under the condition that no pattern from Y, occurs in the text.

W; = 0,1 > 1, Wy # ) — restricted pattern matching.



Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching

In this case we search in text for a subsequence W = w; ... w,, rather
than a string, that is, we look forindices 1 < 11 < 15 < - -+ < 4, < m sSuch
that

Ty, = wy, Ty = wa, -+, Thyy = Wi
We also say that the word VW is “hidden” in the text.

For example:

W = date
T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern but not
even once as a string.

Self-Repetitive Pattern Matching
In this case the pattern YV is part of the text:
w ="T;".

We may ask when the first m symbols of the text will occur again. This is
important in Lempel-Ziv like compression algorithms.



Example

Let T' = bababababb, and VW = abab.

e )V occurs exactly three times as a string at positions {2, 4,6}

ba\bg,__lg ababb.

o If VW = {abab, babb}, then VW occurs four times.

bababababb.

e )V = abab occurs many times as a subsequence.
Here is one subsequence occurrence:

bababababb.
e )V occurs first time at position 2, i.e., Wy, = 2:
bababababb.
e VW = T\T5T3 = bab occurs again (repeats itself) at position 5

bababababb.



Probabilistic Sources

Throughout the talk | will assume that the text is generated by a random
source.

Memoryless Source

The text is a realization of an independently, identically distributed
seguence of random variables (i.i.d.), such that a symbol s € A occurs
with probability P(s).

Markovian Source

The text is a realization of a stationary Markov sequence of order K, that
is, probabillity of the next symbol occurrence depends on K previous
symbols.

Basic Thrust of our Approach

When searching for over-represented or under-
represented patterns we must assure that such a
pattern is not generated by randomness itself (to
avoid too many false positives).
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Application — Biology

Biological world is highly stochastic in its behavior and inhomogeneous or
non-stationary (S. Salzberg).

Start codon codons Donor site

I/

CGCCATGCCCTTCTCCAACAGGTGAGTGAGC

Transcription
start
Exon

—

~
~

— —
~
‘ _ — — /\\/

Promoter 5 UTR CCTCCCA‘GCCCTGCCCAG
Acceptor site
Intron
\ Poly-A site
Stop codon /
GGCAGAAAGAATAAAATCAC
GATCCCCATGCCTGAGGGCCCCTC /4 T
-
— — — I’
- - —
3'UTR

Figure 1. DNA with some signals shown.



Z Score vs p-values

In computational biology certain statistical tools are used to characterize
underrepresented and overrepresented patterns. We illustrate it on
O.,(W).

/-scores

Z(W) =

V/ Var[O, (W)
Z-score tells us how many standard deviations the observed value O,, (W)
is away from the mean.
This score makes sense only if one can prove that Z satisfies (at least
asymptotically) the Central Limit Theorem (CLT), that is, Z is normally
distributed.

p-values
pval(r) = P(O,(W) > P[On] + x4/ Var[O,]).

J/

'
T

p values are used for very rare occurrences, far away from the mean
(where CLT does not apply).

In order to compute p values one must apply either Moderate Large
deviation (MLD) or Large Deviations (LD) results.



CLT vs LD

_ E(On) -0,
B /var[On]

pval(r) = P(On >r)

4

CLT MLD LD
(00]
2/2 2/2 1 —AX
-1 ot 17X O—e
P(O,>H+x0) = 72_-;Je dt Ose 7
X

Let
P(O, > na + xov/n)

Central Limit Theorem (CLT) — valid only in the square root off n vicinity of
the mean, thatis, forx = O(1).

Moderate Large Deviations (MLD) - valid for z — oo but x = o(4/n).

Large Deviations (MLD) - valid for x = O(+/n).



Z-scores and p values for A.thaliana

Table 1: Z score vs p-value of tandem repeats in A.thaliana.

Oligomer Obs. p-val Z-sC.
(large dev.)

AATTGGCGG 2 8.059 x 1074 48.71
TTTGTACCA 3 4.350 x 107> 22.96
ACGGTICAC 3 2.265 x 10~ ° 55.49
AAGACGGTT 3 2.186 x 1079 48.95
ACGACGCTT 4 1.604 x 10~ 74.01
ACGCITTGG 4 5.374 x 10~V 84.93
GAGAAGACG 5 0.687 x 10~ 151.10

Remark: p values were computed using large deviations results of Regnier
and S. (1998), and Denise and Regnier (2001) as we discuss below.



Some Theoretical Results (Single Pattern)

Here is an incomplete list of results on string pattern matching (given a
pattern W find statistics of its occurrences):.

o Feller (1968),
e Guibas and Odlyzko (1978, 1981),

e Prum, Rodolphe, and Turckheim (1995) — Markovian model, limiting
distribution.

e Regnier & W.S. (1997,1998) - exact and approximate occurrences
(memoryless and Markov models).

e P Nicodéme, Salvy, & P Flajolet (1999) - regular expressions.
e E. Bender and F Kochman (1993) — general pattern matching.



Languages and Generating Functions

A language L is a collection of words satisfying some properties.

For any language £ we define its generating function L(z) as

L(z) = Z P(u)z|u|

uel

where P(w) is the stationary probability « occurrence, |u| is the length of
w.

For Markov sources we define VV-conditional generating function:

Ly (z) = Z Pulu_pm =wi - -u_1 = wm)ZIU|
uel

where wu_; stands for a symbol preceding the first character of u at
distance .



Autocorrelation Set and Polynomial

Given a pattern VW, we define the autocorrelation set S as:

S = { m E__ ' m } E_ ' m
— \Wgyq + Wy = Wy 15y Wy = Wy 4

m

and YWV is the set of positions k satisfying w’f = W, _jy1-

S

Wy Wk Wm-ktk1 W

The generating function of S is denoted as S(z) and we call it the
autocorrelation polynomial.

S(z) = Z P(wZil)zm_k.

EewW!w

Its VW-conditional generating function is denoted Sy, (z). For example,
for a Markov model we have

Swiz) = Y Pwpwp)z""".
kewwy



Example

Example:
Let W = bab over alphabet A = {a, b}.
WW = {1,3} and S = {e,ab},
where ¢ is the empty word, since

b a b
b a b

For the unbiased memoryless source

2
S(z) =14 P(ab)z> =1 + ZZ'

For the Markovian model of order one

Spap(z) = 1 + P(a,b\b)z2 =1+ pbapabzz.



Language 7,

We are interested in the following language:
7, —set of words that contains exactly » > 1 occurrences of VV,

and its generating functions

T.(z) = >» Pr{O,(W)=r}z", r>1,
T(z,u) = ZTr(z)ur = Z ZPr{On(W) =riz"u"

for |z| < 1and |u| < 1.



More Languages

() Let 7 be a language of words containing at least one occurrence of
W.

(i) We define R as the set of words containing only one occurrence of WV,
located at the right end. For example, for VYW = aba

ccaba € R.

(i) We also define U/ as
U={u: W u €T}

thatis, a word u € U if YV - u has exactly one occurrence of YV at the
left end of VWV - w,
bba € U, ba & U.

(iv) Let M be the language:
M={u: W -u € Ty and W occurs at the right of W - u },

that is, M is a language such that WM has exactly two occurrences
of VW at the left and right end of a word from M.

ba € M ababa



Basic Lemma

Lemma 1. The language T satisfies the fundamental equation:
T=R-M"-U.

Notably, the language 7, can be represented for any »r > 1 as follows:
T, =R -M"".U,

and
To - W=R-S .
Here, by definition M° := {e} and M* := | J2 , M".

T, —l o S —]
R M M M U

Example: Let WW = T AT'. The following string belongs 7s:

U
—
CCTAT AT GATAT GGA.



More Results

Theorem 1. (i) The languages M, U and R satisfy:

J M

E>1
U-A = M+U-—{e},
W-M = A-R-—(R-W),

A" W+ S — {e},

where A* is the set of all words, + and — are disjoint union and subtraction
of languages.

(i) The generating functions associated with languages M,U and R
satisfy for memoryless sources

1 2™
M) Sw(z) + P(W)—l —
Un(z) = S
R(z) = PW)z" - Uw(z)

(Extension to Markov sources possible; cf. Regnier & WS.)



Main Results: Exact

Theorem 2. The generating functions T,.(z) and T'(z, u) are

T.(:) = REMy (2)Un(z), r>1
T(z,u) = R(z)l_uuM(z)UW(z)
To(z)P(W) = R(2)Sw(z)
where
z—1
Mz) = 1+DW(Z)
1
Uwlz) = Dyy(z)
R(z) = sz(W)DVi(Z)
with

Dw(z) = (1 — 2)Sw(z) + 2" P(W).



Main Results: Asymptotics

Theorem 3. (i) Moments. The expectation satisfies, forn > m:
E[O,(W)] = PW)(n —m + 1),

while the variance is
Var[O,,(W)] = nc1 + ca.
with
cgc = PW)2S(1)—1—-2m—-1)P(W),
coc = PW)(m—-1)(3m—-1)P(W)
— (m—=1)(25(1) = 1) — 25'(1)).



Distributions

(i) Case r = O(1). Let pyy be the smallest root of

Dw(z) = (1 — 2)Sw(z) + z"P(W) = 0.

Then
r+1 . n .
Pr{O,(W) =7} ~ > (=1)aq, (j " 1)05\5"“)
j=1
where

PP (W) (pw — 1)

r+1
(D (pw))
and the remaining coefficients can be easily computed, too.

Ar41 —



Central Limit and Large Deviations

(i) CLT: Caser = EO,, + z+/VarO,, forx = O(1). Then:
Pr{OW) =1} = ———e3 (140 (=)
R A N =y vn))

(iv) Large Deviations: Caser = (1 + §)EO,,. Leta = (1 + 6)P (W) with
0 # 0. For complex t, define p(t) to be the root of

1 —e' Mpy(e”) =0,
while w, and o, are defined as
—p'(wa) = a
—p'(wa) = o,
Then

6—(n—m—|—1)[(a)—i—5a

ar/2m(n —m + 1)

Pr{O,(W) ~ (14+0)EO,} =

where I (a) = aw, + p(w,) and é, is a constant.



Biology — Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence
whenever a word is overrepresented, then its subwords are also
overrepresented.

For example, if W, = AATAAA, then

Wo = ATAAAN

is also overrepresented.
Overrepresented subword is called artifact.
It is important to disregard automatically noise created by artifacts.

Example:
1. Popular Alu sequence introduces artifacts noise.

2. Another example is x-sequence GNTGGTGG in H.nfluenzae
(Nicodeme, 2000).



Discovering Artifacts

New Approach:

Once a dominating sighal has been detected, we look for a
weaker signal by comparing the number of observed occurrences
of patterns to the conditional expectations not the regular
expectations.

In particular, using the methodology presented above Denise and Regnier
(2002) were able to prove that

provided W, is overrepresented, where o can be explicity computed
(often o = P(W,) is W and W, do not overlap).



Polyadenylation Signals in Human Genes

Beaudoing et al. (2000) studied several variants of the well known AAUAAA
polyadenylation signal in mRNA of humans genes. To avoid artifacts
Beaudoing et al cancelled all sequences where the overrepresented
hexamer was found.

Using our approach Denise and Regnier (2002) discovered/eliminated

all artifacts and found in a much simpler and reliable way.
Hexamer Obs. Rk EXp. Z-SC. Rk Cd.Exp. Cd.Z-sc. Rk
AAUAAA 3456 1 363.16 167.03 1 1
AAAUAA 1721 2 363.16 71.25 2 1678.53 1.04 1300
AUAAAA 1530 3 363.16 61.23 3 1311.03 6.05 404
UUUUUU 1105 4 416.36 33.75 8 373.30 37.87 2
AUAAAU 1043 5 373.23 34.67 6 1529.15 12.43 4078
AAAAUA 1019 6 363.16 34.41 7 848.76 5.84 420
UAAAAU 1017 7 373.23 33.32 9 780.18 8.48 211
AUUAAA 1013 | 373.23 33.12 10 385.85 31.93 3
AUAAAG 972 9 184.27 58.03 4 593.90 15.51 34
UAAUAA 922 10 373.23 28.41 13 1233.24 -8.86 4034
UAAAAA 922 11 363.16 29.32 12 922.67 9.79 155
UUAAAA 863 12 373.23 25.35 15 374.81 25.21 4
CAAUAA 847 13 185.59 48.55 5 613.24 9.44 167
AAAAAA 841 14 353.37 25.94 14 496.38 15.47 36
UAAAUA 805 15 373.23 22.35 21 1143.73 -10.02 4068
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Application - Information Security

Convert all color commands to blaor
Since Pos&cript files are often extremely
large, it m&essense to try to compress
themwith either the zip or gzip programs.
In such a case, the eps file is replace by a
file with extensio zip or eps gz, or eps-
gz. Two problems now arise: first LATEX
cannot read such files to obtain the bound-
ing box informationand secondly, the
driver needs to unplcsuch a file to
include it in the final outut. Ths can be
accomplished with, for example: Declare-
GraphicsRule.eps.gzeps.eps.bbgunzig
which stablees the graphics types aps
with the bounding tx information in the
file of the same name and extens. Con;
vrt all color commands to blaor white.

Imagine that the file above is . An attacker/attacker left a
signature/signature as a subsequence in the file.

How to know whether this subsequence constitutes an attack or is merely
a result of randomness?

How to minimize the number of ?



Subsequence Matching (Hidden Words)

A subsequence pattern occurrence or a hidden word occurrence is
defined by a pair:

(W, D)
— the pattern YW = w; - - - w,,, is a word of length m;
— the constraint D = (dy, ..., dn_1) such that m-tuple I = (i1,42, ..., %n)

satisfies
Lyl — 15 < dj,
The I-tuple is called a position.

Let P,,(D) be the set of all positions subject to the separation constraint
D.

An occurrence of pattern W in the text T,, subject to D is a position I =
(i1, 12, ..., %m,) Such that

Ti = Wi, T, = W2, ,T



Basic Equation

Unconstrained problem: D = (oo, ..., c0).
constrained problem: all d; are finite.

Let O,, (W) be the number of VW occurrences in T. Observe that

O.(W)= > X,
IePn (D)
where
X := [W occurs at position I in T,
with

18] = 1 if the property B holds,
| 0 otherwise.

Below analysis is based on:
P Flajolet, W.S., and B. Vallee, ICALP 2001 & JACM 2005.



Very Little Theory — Constrained Problem

Let us analyze the constrained subsequence problem. We reduce it to the
generalized string matching problem using the de Bruijn automaton.

1. The (W, D) constrained subsequence problem will be viewed as the
generalized string matching problem by assuming that VV is the set of all
possible patterns.

Example: If (W, D) = a#-2b, then

W = {ab, aab, abb}.

2. de Bruijn Automaton.
Let M = max{length(W)} — 1 (e.g., M = 2 in the above example).
Define
B=A".
De Bruijn automaton is built over B.



De Bruijn Automaton and Analysis

3.Letb € Banda € A. Tpen the transition from the state b upon scanning
symbol a of the textisto b € B such that

ba — b = babs - - - bya,

that is, the leftmost symbol of b is erased and symbol a is appended on the
right. For example

abb, _a l—>\b\bfa/.
B A B

4. The Transition Matrix
Let T(u) be complex-valued transition matrix define as:

[T(w)]y 5 = P(a)u?M+1D =M b = byby - - byra]

where O,,(b) is the number of pattern occurrences in the text b.



Example

5. Example
Let W = {ab, aab, aba}. Then M = 2, the de Bruijn graph is as below and
the matrix T(u) is shown below

aa ab ba bb

aa P(a) P(b)u? 0 0
T(uw) = b 0 0  P(a)u P(b)
ba P(a) P(b) 0 0

bb 0 0 P(a) P(b)




Generating Functions

6. Using properties of product of matrices we conclude that
O, (u) = Eu?"™] = b’ (u)T"(w)T
where b’ (u) is an initial vectorand T = (1, ..., 1).

7. Spectral Decomposition
Let A(u) be the largest eigenvalue of T'(u) (which we know that it exists).

Then

On(u) = c(u)A"(u)(1+ O(A"))
for some A < 1. This proves that the generating function O,,(u) satisfies
the so called quasi-power law.



Final Results

8. Mean and Variance

E[O,(W)] = nA(0)+0(1) =nP(W) + O(1),
Var[O,, (W) nA”(0) + O(1) = na>(W) + O(1)

where A(s) = log A(e”)
9. Central Limit Theorem

(SO0 ) [

10. Large deviations
If T(w) is primitive, then

1
Pr{0,(W) = aE[0,]} ~ ————¢ /(@) +0a

oV 2TNn

where I(a) can be explicitly computed, and 6, is a known constant.



Reliable Threshold for Intrusion Detection

We argued that one needs a reliable threshold for intrusion detection. If
false alarms are to be avoided, the problem is of finding a threshold «y =
ao(W;n, 3) such that

P(O,(W) > aw,) < B(=107°).

Our results shows that

o0 2 1 2
cun = nPW) + 200 (W)Y, §=—— / et 0 — e
7T x() 0

Q(gap=0), @"(gap=11)
1000 ; ; ‘

900 -
800 -
700 -
600 -
500 -
400 —
300 -
200 -

Threshold
100 -

Il Il Il Il Il Il Il Il Il
(o] 1 2 3 4 5 6 7 8 9 10
number of attacking signatures

Figure 2: Pattern=wojciech, window=100 (cf. Gwadrea at al. (2004).
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Application — Multimedia Compression

frame one

Is length of codeX{M <M ?

By how much? nter

Optimal compression

M 1 [ frame two
(X)) == Z log, n+8(L,)
|

Code = (pointer,length, width)

Is the code length shorter than the original file?

1. T. Luczak and W.S., |[EEE Inf. Theory, 1997.
2. M. Alzina, W.S., A. Grama, |IEEE Image Proc., 2002.



Lossy Lempel-Ziv Scheme
— e

~N
fixed data baseX |
of lengthn

decoder sequence
XlM or Xj

Source sequence (e.g., second frame in a video stream) X{” is assumed
to be of length M.

Fixed database (e.g., the first frame in video) X7 is of length n.

Code C,, of length [(C,,) is a function from A" to {0, 1} that represents
the source sequence.

Code = (pointer,length).

Reproduction sequence X{L that approximates the source sequence

(e.g., for a given D and a distortion measure d(-, -) such that d( X7, X?) <
D).

Bit rate
length(Cp(X))

n

Tn(Xfw) —




Some Definitions

Lossy Lempel-Ziv algorithm partitions according to II, the source
sequence X7 into variable phrases Z', ..., Z!""l of length L}, . . ., L!"™],

Code length: Since Code=(ptr, length) the length of the code for the
source sequence X" is

[1In |
(X)) = Z logn + O(log L,)

=1
and hence the bit rate is

[1In |
1 .
ra( XM = o7 E logn + ©(og L)).

1=1

How much do we gain?



How much do we compress?

Generalized Shannon Entropy is defined as

#o(D) = lim Ep[—log P(Bp(X7))]

n— 00 n

where Bp(z}) = {y{ : d(y{,z]) < D} is a ball of radius D with center

An

P(Bp(X;") ~ Z"®)8
Bp(X1"

Theorem [T. Luczak and W.S, 1997] For Markov sources

. L) 1 (br.)
im = : r.).
n—oologmn  To(D) b

and
lim lim E[r,(X")] = #(D).

n—oo M —oo



Data Structures and Algorithms

We implemented 2D Pattern Matching Compression (2D-PMC) scheme
that has three major encoding mechanismes:

e 2D Pattern Matching
e Enhanced Run-Length Encoding
e Lossless Coding

2D pattern matching is the most efficient encoding. The basic idea is to
find a two-dimensional region (rectangle) in the uncompressed part of the
image that occurs approximately in the compressed part (i.e., database),
and to store a pointer to it along with the width and the length of the
repeated rectangle, as shown on the next slide.

Run-length encoding (RLE) of images identifies regions of the image with
constant pixel values. We enhance RLE by giving it the capability of
coding regions in which pixel values can be (approximately) modeled by
a planar function.



Sample of Image Compression Results

Pattern Matching Compression
Banner 0.29 bpp, 2DPMIC vs. JPEG

Banner 0.50 bpp, 2DPMIC vs. JPEG

y
Li)
R i =N
Ly K- ki
=
¥
'
o

= "Iy

(JPEG) (2D-PMC)


http://www.cs.purdue.edu/homes/ayg/Video/

Comparisons for Images

2D-PMIC JPEG

BPP CR RMSE  PSNR BPP CR RMSE  PSNR

Image: Banner

0.29 28.00 9.5 28.6 0.29 28.00 27.4 19.4

0.50 16.00 1.3 45.8 0.50 16.00 15.3 24.5

0.54 14.89 0.0 Inf 1.01 7.94 15.1 24.6
2.00 4.00 15.1 24.6

Image: Basselope

0.27 2956 21.0 21.7 0.25 3231 193 22.4

0.51 1558 126 26.2 0.50 16.17 125 26.2

0.96 8.33 0.0 Inf 1.00 7.95 6.9 31.4
201 4.08 2.6 39.7

Image: Lena

0.25 32.01 10.8 27.5 0.25 32.30 8.9 29.1

0.49 29.30 8.7 29.3 0.50 16.03 5.8 32.9

1.05 7.61 5.6 33.1 1.00 8.04 4.2 35.7

1.94 4.3 3.6 37.1 201 381 2.7 39.4

Image: San Francisco

0.25 32.00 17.0 23.5 0.25 32.00 155 24.3

0.50 16.00 13.1 25.8 0.50 16.00 10.6 27.6

1.05 7.59 6.7 31.6 1.00 8.02 6.8 31.5

2.03 3.95 2.9 38.8 201 3.98 3.5 37.2




Video Compression — Statistics

Video Pattern Matching Compression

Sample MPG PMC Comp. Time Decomp. Time
MPG PMC MPG PMC
Claire 17.7 19.1 2 26 0.36 0.05
Football 111.9 90.9 3 29 0.34 0.09
Missa 20.4 20.2 9 23 0.32 0.03
PomPom  187.1 174.6 7 34 0.35 0.07
PingPong  113.8 104.9 8 39 0.35 0.03
Train 202.8 139.3 9 25 0.35 0.04
Table 2: Comparison of data rates (KB/s), compression, and

decompression times. 2DPMC yields performance ranging from 7.9%

worse to 31.3% better than MPEG2.


http://www.cs.purdue.edu/homes/ayg/Video/
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Error Resilient LZ’77 Scheme

In the LZ’77 there are many copies of the longest match that can be used
to correct errors.
We denote by M, the number of such copies.

history current position

[Tom=x ]| [omx | Jomwx ] [om= | [omx | |

00

01
10

11

Figure 3. At this stage in LZ’77, we have M,, = 4.



Source Coding vs. Channel coding

Source Coding (i.e., Data Compression)
e Goal: Represent the source information with a minimum of symbols
Channel Coding (i.e., Error Correction)

e Goal: Represent the source information with a minimum of error
probability in decoding

The goals of source and channel coding are conflicting:

Channel coding traditionally requires additional symbols to perform error
correction.

Solution: Joint Source-Channel Coding.



Main Idea of the LZRS’77

Lonardi and W.S. in 2003 proposed a joint source-channel coding for LZ’77
by recovering parity bits needed for the Reed-Solomon channel coding
from redundancy (multiple copies of longest match) of LZ’77.

Definition: Consider the stage at which n bits of a phrase have already
been compressed by LZ’77. By M,, we denote the number of copies of the
longest prefix of the uncompressed string that appear in the database.

By a judicious choice of pointers in the LZ’77 scheme, we can recover
| log, M, | bits at this stage.

In fact, if this greediness is relaxed (say, by looking for the 10th largest
prefix, for instance), then the number of copies found in the database wiill
increase significantly. This would allow even more errors to be corrected.



Encoder and Decoder of LZRS'77

We use the family of Reed-Solomon codes RS(255, 255 — 2¢) that contains
blocks of 255 bytes, of which 255 — 2e are idata and 2¢ are patrity.

Encoder: The data is broken into blocks of size 255 — 2e. Then, blocks are
processed in reverse order, beginning with the very last. When processing
block 2, the encoder computes first the Reed-Solomon parity bits for the
block : + 1 and then it embeds the extra bits in the pointers of block :.

Decoder: The decoder receives a sequence of pointers, preceded by the
parity bits of the first block. It uses parity bits to correct block B;. Once
block B is correct, it decompresses it using LZS’77. Redundant bits of block
B1 are used as parity bits to correct block B,, etc.

Y B1 B2 Bs " Bb
l Adjust J Adjust l Adjust l

Store pointers pointers pointers

‘\/RS k/Rs K/RS bRS

Figure 4: The right-to-left sequence of operations on the blocks for the
encoder



Analysis of M,, Via Suffix Trees

Build a suffix tree from the first n suffixes of X (i.e., X, X5°, ..., X ). Then
insert the (n + 1)st suffix, namely X< ;.

Observe: M, is the size of the subtree that starts at the insertion point of
the (n + 1)st suffix.

Figure 5. M, is the size of the subtree at the insertion point of S5. Here
M, = 2.



Main Results

Theorem 4 (Ward, W.S., 2005). Let z;, = 2’“”” Vk € Z, where ; lnp = L forsome

relatively prime r, s € 7. (we are most /nterested in the s:tuat/on Where lnp
Is rational). Then

a(p/q)’ + p(a/p)’
h

1 [ &
+ 6 (logy/,n) — Ul ——0;(logy/p, 2)

E[(M.)Y] = T(j)

+0(n™?)

zZ=nNn

where T' is the Euler gamma function and

€2kr7m't1-w(zk ‘|‘]) qu—zk—j—i—l + qu—zk—j—i—l
5;(t) => - ( )

o p_zk+1 lnp + q_zk+1 In q

We emphasize —3n (i—ééj(logl/p z))‘ is O(n™"). Also §, is a periodic

function that has small magnitude and exhibits fluctuation when ﬁ‘l—g IS

rational.



Distribution of M,
Theorem 5 (Ward, W.S., 2005). Let z; = 2% Vk € 7, where -2 = L for
some relatively prime r, s € 7. Then

~gln(1 —pu)+pln(l —qu)
h

B[] = + d(logy ),y u) + O(n™?)

where

Sty = 5 TG (g p )y g
| k0 p~*ktlInp 4+ g *k Tl Ing
and T’ is the Euler gamma function.

Corollary 1. It follows immediately that
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and
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