q"

PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern
Growth

Authors:

Jian Pei, Jiawei Han, Behzad Mortazavi-Asi, Helen Pinto Qiming Chen,
Umeshwar Dayal, Mei-Chun Hsu

Presenter:
Wojciech Stach

‘ Outline
+

= Mining Sequential Patterns
= Problem statement
= Definitions & examples
= Strategies

‘ Sequential Pattern Mining

= Given
= a set of sequences, where each sequence consists of a list
of elements and each element consists of set of items
= user-specified min_support threshold

‘ Sequential Pattern Mining

= Find all the frequent subsequences, i.e. the
subsequences whose occurrence frequency in the
set of sequences is no less than min_support

&

<a(abc)(ac)d(cf)> -5 elements, 9 items

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)> <a(abc)(ac)d(cf)> - 9-sequence
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc> <a(abc)(ac)d(cf)> = <a(cba)(ac)d(cf)>

<a(abc)(ac)d(cf)> # <a(ac)(abc)d(cf)>

Solution — 53 frequent subsequences

<a><aa> <ab> <a(bc)> <a(bc)a> <aba> <abc>
<(ab)> <(ab)c> <(ab)d> <(ab)f> <(ab)dc> <ac>

S,

10 <a(abc)(ac)d(cf)> <aca> <acb> <acc> <ad> <adc> <af>

20 <(ad)c(bc)(ae)> <ba> <bc> <(bc)> <(bc)a> <bd> <bdc> <bf>
30 <(ef)(ab)(df)cb> <c> <ca> <cb> <cc>

40 <eg(af)cbc> <d> <db> <dc> <dcb>

<e> <ea> <eab> <eac> <eacb> <eb> <ebc> <ec>
<ecb> <ef> <efb> <efc> <efcb>

min_support = 2

<f> <fb> <fbc> <fc> <fcb>

Subsequence vs. super sequence

= Given two sequences a=<a;a,...a,> and
B=<b,b,...b,,>

= a is called a subsequence of 3, denoted as a(P ,
if there exist integers 1<j,<j,<...<j,, <m such that
a;0b;;, a; Obyy, .., a,00by,

= [is a super sequence of a

* Sequence Support Count

= A sequence database is a set of tuples <sid, s>

= A tuple <sid, s> is said to contain a sequence q, if
a is a subsequence of s, i.e., a s

= The support of a sequence a is the number of
tuples containing a

@ id Sequence a;=<a> support(a,) = 4
& B=<a(@bc)ac)d(ch)> =<a(abc)(ac)d(cf)> 10 <a(abc)(ack(ch> a,=<ac> support(a,) = 4
g 20 <(ad)c(bc)(ae)>
ay=<aa(ac)d(c)> 30 <(ef)(ab)(dncb> az=<(ab)c> support(as) = 2
40 <eg(af)cbc>
a,=<(ac)(ac)d(cf)>
oz=<ac> og=<(abc)dcf>
5
* Strategies * - Outline

= Apriori-property based
= AprioriSome (1995)
= AprioriAll (1995)
= DynamicSome (1995)
= GSP (1996)

= Regular expression constraints
= SPIRIT (1999)

= Data projection based
= FreeSpan (2000)

= PrefixSpan algorithm
= Motivation
= Definitions & examples
= Algorithm
= Example
= Performance study

* Motivation and Background

= Shortcomings of Apriori-like approaches
= Potentially huge set of candidate sequences
= Multiple scans of databases
= Difficulties at mining long sequential patterns

= FreeSpan (Frequent pattern-projected Sequential pattern
mining) — pattern growth method
= General idea is to use frequent items to recursively project
sequence databases into a smaller projected databases and
grow subsequence fragments in each projected database

= PrefixSpan (Prefix-projected Sequential pattern mining)
= Less projections and quickly shrinking sequences

Prefix

= Given two sequences a=<a;a,...a,> and
B=<b,b,...b,,>, m=sn
= Sequence B is called a prefix of a if and only if:
= b =3a fori<sm-1;
« b,0Oa,;
= All the items in (a,, — b,,) are alphabetically after those in
b

m

S,

o =<a(abc)(ac)d(cf)> (abc)(ac)d(cf)>

B =<a(abc)a> B =<a(abc)c>

10

* Projection

= Given sequences a and (3, such that Bis a
subsequence of a.

= A subsequence a’ of sequence a is called a
projection of a w.r.t. B prefix if and only if
= 0o’ has prefix 3;
= There exist no proper super-sequence a” of a’ such that
a” is a subsequence of a and also has prefix (3

CI‘,J o =<a(abc)(ac)d(cf)>
B =<(bc)a>

o’ =<(bc)(ac)d(cf)>

11

Postfix

» Leta’ =<a,a,...a,> be the projection of a w.r.t.
prefix B=<a;a,...ay.1a x> (M <n)

= Sequence y=<a",an,1..-@,> is called the postfix of
a w.r.t. prefix 3, denoted as y= a/ B, where
a"n=(ap-a'n)

= We also denote a =By

S,

a’ =<a(abc)(ac)d(cf)>
B =<a(abc)a>
y=<(_c)d(cf)>

12

‘ PrefixSpan — Algorithm

= input: A sequence database S, and the minimum support
threshold min_sup

= Output: The complete set of sequential patterns
= Method: Call PrefixSpan(<>,0,S)
= Subroutine PrefixSpan(a, |, S|,)

= Parameters:
= O: sequential pattern,
= |: the length of q;

= S|,: the a-projected database, if a #<>; otherwise; the
sequence database S.

13

‘ PrefixSpan — Algorithm (2)

A « Method
1. Scan S|, once, find the set of frequent items b
such that:

a b can be assembled to the last element of a to form a
sequential pattern; or

b can be appended to a to form a sequential pattern.

2. For each frequent item b, append it to a to form a
sequential pattern a’, and output a’;

3. For each a’, construct a’-projected database S|,
and call PrefixSpan(a’, 1+1, S|).

14

@ [Nd_ T sequence]

) 10 <;(:€t’>£)(ac)d(cf)>

- 20 < c(bc)(ae)>

‘ PrefixSpan - Example Lo

40 <eg(af)cbc>

1. Find length-1 sequential patterns min_support = 2

2. Divide search space

<(ac)d(cf)> <(cf)> <(_f)(ab)(df)cb>| | <(ab)(df)cb>

<(bc)(ae)> <c(bc)(ae)> <(af)cbc> <cbc>
 <(_f)cb>
<bc>

<(_c)(acyd(cf)>
<(_c)(ae)>
<(df)cb>
<c>

<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

15

‘ PrefixSpan — Example (2)

~

5. Find subsets of sequential patterns

<(ch)> 1 2 3 0 1 0 1 1
<c(bc)(ae)>
<(_f)cb>
<db> <dc>

EE

| o

<dcb>

16

* PrefixSpan - characteristics

| = No candidate sequence needs to be generated by
PrefixSpan

= Projected databases keep shrinking
= The major cost of PrefixSpan is the construction of
projected databases
) . How to reduce this cost?

Q Different projection methods
= Bi-level projection
= reduces the number and the size of projected databases
= Pseudo-Projection

= reduces the cost of projection when projected database can be

held in main memory 17

@ id Sequence
10 <a(abc)(ac)d(cf)>
* Bi-level Projection 20| <(adlboae)>
30 <(ef)(ab)(df)cb>

| . 40 <eg(af)cbc>

min_support = 2
= Scan to get 1-length sequences
= Construct a triangular matrix instead of projected
databases for each length-1 patterns
2
(4,2,2) 1

(33.2)
(2,1,1) (2,2,0) (1,3,0) 0
(1,2,1) (1,200 (1,2,0) (1)1,0) 0
2,1,1) (2,20 (1,21 (11,1 (,01) 1
a b c e f

Support(<cc>) = 3

ALL length-2 sequential
pattern

Support(<ac>) =4
Support(<ca>) =2
Support(<(ac)>) = 1

18

* Bi-level projection (2)

. i:or each length-2 sequential pattern a, construct
the a-projected database and find the frequent
items

= Construct corresponding S-matrix

aC,)

Y =

<ab> a \\b / _o Nud d) Ne [[\f f)
<(_o)(ac)(ch> 2 N 2] 2 [Jo 1 0
<(_0)a> <
= <aba> <abc> <a(bc)>

0
(1,0,1
| a c (9 <a(bc)a>

19

)

* Bi-level projection (3) - optimization

= "Do we need to include every item in a postfix in
the projected databases?”

= NO! Item pruning in projected database by 3-way
Apriori checking

(",J !\ny super-sequence of . ¢ can be excluded from construction of
it can never be a sequential <ab> - projected database

pattern

<ac> is not frequent

To construct <a(bc)>-projected database,
sequence <a(bcde)df> should be projected to <(_e)df>
instead of <(_de)df>

<a(bd)> is not frequent

20

* Pseudo-Projection
I

= Observation: postfixes of a sequence often
appear repeatedly in recursive projected databases

= Method: instead of constructing physical
projection by collecting all the postfixes, we can
use pointers referring to the sequences in the
database as a pseudo-projection

= Every projection consists of two pieces of

information: pointer to the sequence in database
and offset to the postfix in the sequence

* Experimental Results

@& st=<a(aboacrd(ch> Pointer Offset Postiix
sl 2 <(abc)(ac)d(cf)>
sl 5 <(ac)d(cf)>
sl 6 <(_c)d(cf)>

21

. Environment: 233MHz Pentium PC, 128 MB RAM,
Windows NT, Visual C++ 6.0

= Reported test on synthetic data set: C10T8S8I8:
= 1000 items
= 10000 sequences
= Average number of items within elements: 8
= Average number of elements in a sequence: 8
= Competitors:
= GSP
= FreeSpan
= PrefixSpan-1 (level-by-level projection)
= PrefixSpan-2 (bi-level projection)

22

* Runtime vs. support threshold

400 - 200 . — o —FreficSpan-1
N — =PrefixSpan-1 A\ — = PrefigSpan-2
5 350 4 —— Prefix Span-2 5 1604 N —— PrefixSpan-1(Pseudc)
£ 3004 * —a— FreeSpan £ \ —+— Profix Span-2 (Preudo)
g 20 - -4 -GSP 3 120 4 :
)
~— 200 4 =
@ [
E 150 4 £ &0+
b= £
c
& o " B 404
50 4 e)
.
o e 0
Q.00 0.50 1.00 150 200 2.50 3.00 020 0.30 0.40 0.50 0.60

Support threshold (%) Support threshold (%)

23

* I/O costs vs. threshold and scalability
| .

1.E+10 9 —a—PrefikSpan-1 30
—8—PrefisSpan-1 (pseudo)
8E+09 4 —&—PrefixSpan-2 z 25
- —3¢—PrefixSpan-2 (pseuds) E 20
G 6E-0S 1) .
o =3
© 4E0e1 g R o
= ——PrefixSpan-1
2E+08 ng: 5 —o—PrefixSpan2
* R 0 r T T T J
0.E+00 4 [V 100 200 300 400 500

a0 0

1.0 20
Support threshold (%) # of sequences (thousand)

24

Outline

s Conclusions

25

* Conclusions

= PrefixSpan
= Efficient pattern growth method
= Outperforms both GSP and FreeSpan
= Explores prefix-projection in sequential pattern mining

= Mines the complete set of patterns but reduces the effort
of candidate subsequence generation

= Prefix-projection reduces the size of projected database
and leads to efficient processing

= Bi-level projection and pseudo-projection may improve
mining efficiency

26

References

= Pei J., Han J., Mortazavi-Asl J., Pinto H., Chen Q., Dayal U., Hsu M.,
PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth, 17th International Conference on Data Engineering
(ICDE), April 2001

= Agrawal R., Srikant R., Mining sequential patterns, Proceedings 1995
Int. Conf. Very Large Data Bases (VLDB'94), pp. 487-499, 1995

= Han J., Dong G., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M.-C,,
Freespan: Frequent pattern-projected sequential pattern mining,
Proceedings 2000 Int. Conf. Knowledge Discovery and Data Mining
(KDD'00), pp. 355-359, 2000

= Srikant R., Agrawal R., Mining sequential pattern: Generalizations
and performance improvements, Proceedings 5th Int. /conf.
Extending Database Technology (EDBT'96), pp. 3-17, 1996

= Zhao Q., Bhowmick S. S., Sequential Pattern Mining: A Survey.
Technical Report Center for Advanced Information Systems, School
of Computer Engineering, Nanyang Technological University,
Singapore, 2003

27

THANK YOU Il

Any Questions?

28

