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Frequent Itemset Mining: Motivation

+ Frequent itemset: pattern that occurs frequently in the
database

< Applications
+ Market-basket data analysis
+ Web log mining
+ DNA sequence analysis
< Foundations of many data mining tasks
+ Association rule, correlation
+ Associative classification

+ Seguential patterns, temporal or cyclic association, partia
periodicity patterns, episodes
+ | ceberg cube computation
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Frequent Itemset Mining: Problem Statement

+ Given
* A setof items /= {a;, &, ..., a,}
+ A transaction database D = {t| t  I}.
+ support (p) = [[{tlp=t} ||
* minimum support threshold min_sup
< Output
+ Every itemset p such that support(p)/||D]| >= min_sup

< Apriori property (anti-monotone property)
¢ |f anitemset is not frequent, then none of its superset can be
frequent
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Frequent Itemset Mining: An Example

TID Transactions

Frequent Itemsets

1 ab.cfmp c:3, d:3, p:4, f:5, m:5, a:6
2 adefg 40% cp:3, cm:3,ca:3, pf:3, pm:3,
3 a,bfmn pa:3, fm:3, fa:4, ma:5
4 acefmp 3 3 3
cpm:3, cpa:3, cma:3,
2 d.f.np pma:3, fma:3
6 a,c,hmp
7 a,d,m,s cpma:3
Transaction database
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Frequent Itemset Mining: Challenges

+ Challenge

* The size of search space is exponentia to the number
of itemsin the database

+ Typical approaches
+ Candidate generate-and-test approach
+ Filter-and-refine approach
+ Vertical Mining approach
+ Pattern growth approach
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Candidate Generate-and-test Approach

+ Basic Apriori algorithm [VLDB'94]
¢ scan database and count frequent 1-itemsets
+ |n subsequent iterations

 Pairs of frequent k-itemsets are joined to form candidate (k+1)-itemsets

e Scan database to verify candidate (k+1)-itemsets and generate frequent
(k+1)-itemsets.

< Drawbacks

¢ Scan database multiple times
e equal to the maximal length of frequent itemsets

+ Generate and test alarge number of candidate itemsets
¢ Subset matching is expensive
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Speeding up Apriori algorithm

+ DHP [SIGMOD'95]
+ prune candidate itemsets using hashing
+ trim both number of transactions and number of
items in each transaction after each iteration
% DIC [SIGMOD’97]
¢ count support for an itemset shortly after all of its

subsets are proved to be frequent rather than wait until
next database scan

< Inworst case, the number of database scan is still
equal to the maximal length of frequent itemsets




Filter-and-refine Approach

< Framework
+ |n thefilter phase, generate candidate itemsets

+ |n the refine phase, scan database to verify the
validity of each candidate itemsets

+ Usually scans database only twice
« Drawbacks

+ Generate and test alarge number of candidate
Itemsets

+ The number of candidate itemsets generated can
be larger than that of the basic Apriori algorithm
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Filter-and-refine Algorithms

+ Partition [VLDB’95]
+ Partition the database into digjoint partitions such that each

partition can be mined in main memory. All the itemsets that
are frequent in at least one partition form the candidate itemsets.

« Sampling [VLDB’96]
+ Inthefirst pass, pick arandom sample to compute frequent
itemsets along with a negative border.
+ In the second pass, generate al frequent itemsets.
<+ BBS (Bit-sliced Bloom-filtered Signature file) [[CDE'02]

+ Inthefilter strategy, the candidate patterns are obtained by
scanning BBS instead of the database.

* Tuning the size of BBS for optimal performanceis critical
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Vertical Mining

+ Each itemset is associated with atid list or tid bitmap
+ tid list: list of transaction ids containing that itemset
* support counting is performed by tid list/bitmap join,
which is more efficient than subset matching
« drawbacks:
¢ Constructing and maintaining alarge number of tid
list/bitmap
+ Not scale well with respect to the number of transactions
« Optimizations
¢ Tid bitmap compression
+ Use diffset to reduce size
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Pattern Growth Approach

+ Basicidea
* Grows afrequent itemset from its prefix to avoid candidate generation and test
¢ Using divide-and-conquer methodol ogy
< Framework
* Find all frequent itemsin the database, | = {a, b, ¢, d}
+ Divide the search space into disjoint sub-spaces:
* Frequent Itemsets containing a
» Frequent itemsets containing b but no a
» Frequent itemsets containing c but no a, b
» Frequent itemsets containing d but no a, b, ¢
¢ Accordingly, the database is divided into partitions (conditional database) after
removing infrequent items
» All transactions containing a
» All transactions containing b (item ais eliminated)
« All transactions containing c (items aand b are eliminated)
« All transactions containing d (items a, b and ¢ are eliminated)
+ Mine each conditional database recursively
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Pattern Growth Approach---Key Factors

e

o

Total number of conditional databases } Depends on item
Size of individual conditional database search order
Conditional database representation format

¢ Tree-based structure: low traversal cost but high construction
cost

* Array-based structure: low construction cost but high traversal
cost

Conditional database construction strategy
¢ Physical: expensive but save traversal cost
¢ Pseudo: cheap but incur high traversal cost

» Conditional database traversal strategy

¢ Top-down

+ Bottom-up

®,
o

®,
o

®,
o

g
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Pattern Growth Algorithms

algorithms |itemsearch | CondDB | ConDB tree
order format construction | traversal

Tree static array adaptive

Projection lexicographic

FP-growth dynamic FP-tree physical bottom-up
frequency

H-mine static hyper- pseudo
lexicographic structure

OoP adaptive adaptive adaptive bottom-up

PP-mine static PP-tree pseudo top-down
lexicographic

AFOPT dynamic adaptive physical top-down
frequency

CLOSET+ dynamic FP-tree adaptive adaptive
frequency
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Mining Frequent Closed/Maximal |temsets

< The complete set of frequent itemsets can be very large on
dense datasets

+ |f alength-100 itemset is frequent, then all of its 2190-1
subsets are frequents. Infeasible!

< Solution: mining frequent closed/maximal itemsets.

* Anitemsetisclosed if al of its supersets are less frequent than
it

+ Anitemset ismaximal if none of its supersetsis frequent

¢ The number of frequent closed/maximal itemsets can be
substantially smaller than the number of frequent itemsets
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Previous wor k---summary

< Candidate generate-and-test algorithms
¢ Scan database multiple times
¢ Generate and test alarge number of candidate itemsets
< Vertical mining algorithms
+ Not scalable well with respect to the number of transactions
+ Pattern growth algorithms
¢ Construct and traverse alarge number of conditional databases
¢ Existing agorithms mainly focus on optimizing in-memory
performance
% A recent comparative study (FIMI’03 workshop) shows that

few existing algorithms can scale-up to very large databases
with millions of transactions.
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Our Work -- Overview

+ SSP: a scalable algorithm for mining frequent itemsets from
very large databases with millions of transactions
¢ Partitioning database according to search space
* Specialy designed for out-of-core mining
¢ Taking memory constraints into consideration in algorithm
design
¢ Managing memory in fully dynamic fashion
+ CFP-tree: a compact disk-based structure for storing and
querying frequent itemsets
¢ Stores only frequent closed itemsets

+ Supports three basic types of queries
*  Queries with minimum support constraints
* Querieswith item constraints
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Partition Algorithm (viLps o

+ Basicidea
+ |If we divide the database into several digjoint partitions, then a frequent
itemset must be frequent in at least one partition.
< Algorithm
+ Partition the database into disjoint partitions such that each partition can be
mined in main memory.

+ All the itemsets that are frequent in at least one partition form the candidate
itemsets. The whole database is scanned to find the exact set of frequent
itemsets

< Pros & cons

+ Scan database only twice
- Duplicate computation cost

- Itisvery hard to accurately estimate the amount of memory consumed by the
mining algorithm when partitioning the database.
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SSP: Sear ch Space based Partitioning

+ It is based on the pattern growth approach, and partitions the
database according to the search space of the frequent itemset
mining problem.

< Different partitions share data but do not share frequent
Itemsets.

+ The frequent itemsets mined from each partition are final,
therefore we do not need to scan the whole database to verify
their supports.

+ We need to keep only datain memory.

- Thetotal size of the partitions can be much larger than the size
of the database

< Main issue: utilize the data overlap among partitions to reduce
1/O cost.

20




SSP Algorithm---framework

SSP Algorithm (I, D, min_sup)
1. Scan D, to count frequent items, and sort them in descending frequency order,
denotedasF={a,, a,, ..., a;}
2. for (every item a eF)
D a=9;
3. For (every transactiont € D, ) //construct conditional database

1. Removeinfrequent itemsfrom t, and sort remaining items according to their
ordersinF;

2. Letabethefirstitemof t,inserttinto D, , .
4. for (j=Lj<=n;j++)
1. Outputs=I wa;
2. SSP(s, D, min_sup);
3. for (every transactiont € D) //push-right step
1. t=t-{a};
2. Leta bethefirstitemof t, inserttinto D, .
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SSP Algorithm--- Features

+ item search order: ascending frequency order
+ The most infrequent item has the largest candidate extension
set, with the increasing of frequency, the number of candidate
extensions decreases

» Balances the size of conditional databases thus ensures that every time a small
conditional database is pushed right

» Balances the size of the sub search spaces thus ensures that the memory
consumption for mining the conditional databases cannot be large

+ Conditional database representation format: adaptive
¢ Sparse: array
¢ Dense: prefix-trie
¢ Extremely dense: bucket counting
< Conditional database construction strategy
¢ Physical construction
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SSP Algorithm --- Main Issue

< A transaction can belong to multiple conditional databases, but at any time
it can belong to one and only one conditional database.

+ Thetotal size of the conditional database is can be much larger than the original
database. On average, L,,,/2 timeslarger, where L, is the average transaction
length.

¢ The space needed for holding all the conditional databases cannot be larger than
the original database.
< |f all the conditional databases cannot be held in memory, atransaction
may be write to and read from disk many times, which incurs high 1/0
cost.
< Mainissue: reducing I/O cost by utilizing the transaction sharing among
conditional databases
¢ SSP-naive
¢ SSP-static
¢ SSP-dynamic

avg
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SSP- Naive algorithm

+ Itisredlistic to assume that a single conditional database and
all its descendant conditional databases can be held in
memory

¢ Theamount of main memory available nowadaysis very large.

* Ascending frequency order: ensures that a single conditional database is much
smaller than the original database, and the size of its descendant conditional
databases also shrinks quickly.

+ |f asingle conditional database can fit in memory but there is no enough space
for holding all of its descendant conditional databases, we can use the pseudo-
construction strategy.

+ If asingle conditional database cannot be held in main memory, we can
recursively apply the out-of-core algorithm on the conditional database.
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SSP- naive Algorithm

+ Basic ideaKegp one conditional database in memory
at onetime.

+ When constructing new conditional databases from the
original transaction database, we keep only the first
conditional database in memory and write all the others on
disk.

+ When the mining on a conditional database in memory is
finished, some of the transactionsin it will be written to other
conditional databases.

+ Oneoptimization isthat if atransaction belongs to the next
conditional database to be mined, we keep it in memory.
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SSP- ntatic Algorithm

> It isawaste of memory to keep only one conditional database in memory
given the large amount of memory available nowadays.
< Solution

+ keep adjacent conditional databases into memory as more as
possible---How many?

+» Observation:

+ If we keep conditional databases D, ,, ..., D, ,,in memory,
the space required for storing these m conditional databasesis
smaller than the total size of these m conditional databases
because of transaction sharing.

» To accurately calculate the borders between partitions, we use a matrix C,
called differential matrix, to record the differences among conditional
databases.
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SSP- dynamic Algorithm

» SSP-static Algorithm
+ requires extral/O cost to partition the database.

+ usesthetotal length of the transactions in a conditional
database as the estimation of the size of the conditional
database, which isaarather loose upper bound when the
conditional databaseis dense.

« SSP-dynamic algorithm
+ Adopt alazy writing strategy to fully utilize memory:
writes conditional databases on disk only when new

structures are to be created but there is no memory
available
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SSP-dynamic algorithm

+ The search space is traversed in depth-first-order, therefore
the exact access order of the conditional databases is known.
¢ put the conditional databases that will be accessed last on disk
to release memory for new data.
+ Maintain an active stack Sto trace the conditional
databases that have not been processed yet at every level.

» Conditional database dumping order: from bottom to top, from right to
left.

+ Itisinefficient to release memory for every transaction to be
inserted.

+ Solution: estimate the size of memory required for future
mining when releasing memory.
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SSP Algorithm---Summary

< SSP-naive
+ Utilizes the overlap between adjacent conditional
databases to reduce /O cost.
+ SSP-static
+ Utilizes the overlap between adjacent partitions to reduce
I/O cost.

+ Requires an additional database scan to compute
differential matrix

« SSP-dynamic
* Uses alazy-writing strategy to guarantee the full
utilization of the memory.

¢ Dynamic in nature
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Experiment Setting

< Test environment
¢ 1.0GHz Pentium |11, 256MB memory
¢ Linux mandrake

< Datasets generated by IBM dataset generator

Datasets| size #Trans #ltem | AvgTL | MaxTL
T1014D5mN10kP10k | 238MB | 4,922,589 | 7692 36 10.14
T20115D3mN1kP10k | 223MB | 2,719,116 | 994 61 21.82

T30120D2mN5kP5k | 277MB | 1,933,520 | 4706 88 31.18
T40110D2mN10kP10k | 374MB | 1,999,994 | 8912 84 39.95
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Minimum Support
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CFP-Tree---Motivation

< Frequent itemset mining
+ A time-consuming process
* |/Ointensive : scan database multiple times

» CPU intensive : count supports for a large number of
itemsets

+ A repeated process

« Different database and/or applications require different
parameters

 Often no guidelines for choosing proper parameters
+ Solution: mining once and using many times
+ CFP-tree: acompact structure for storing and querying
frequent itemsets
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CFP-tree---Overview

< A compact structure for storing frequent itemsets
+ Stores only frequent closed itemsets to reduce tree
size
< Supports three basic types of queries
+ Queries with minimum support constraints
* Find al itemsets with support no less than s%
+ Queries with item constraints
* Find all frequent itemsets containing items{a,, &,...a.,}

+ Queries with both support and item constraints




CFP-tree Structure

Frequent | c:3| d:3| p:4| f:5 | m:5| a:6 |
Closed Itmesets

d:3, p:4, f:5, a:6
pf:3, fa:i4, ma:5

fma:3

cpma:3

» ltemsin anode are sorted in ascending order of their frequencies
< Anentry stores:
+ Itemid,
Support
A child pointer
A hash bitmap: to indicate whether an item appearsin the subtree

* & o

| rrre— £

CFP-tree---Properties

| c:3| d:3| p:4| f:5 | m:5| a:6 |

< Apriori Property
+ The support of entry cannot be greater than its ancestors.
< Left Containment Property

+ Theitem of an entry E can only appear in the subtrees pointed by
entries before E or in E itself
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Query With Support Constraint

» Find all frequent patterns with support no less than 50%
+ Apriori property : only entry p and entries after p need to be visited
1

¥
| c:3| d:3| p:4| f:5 | m:5| a6 | Frequent Patterns:
T \ ‘\

N {p}:4
\ {f}:5

{f,a}:4
{m,a}:5

m:3
{a}:6

Query with Item Constraint

< Find all frequent patterns containing item f and p

+ Left containment property: only p and entries before p need to be visited
|

t

c:3| d:3| p:4| f:5 | m:5| a:6 | Frequent Patterns:

{p,f}:3

T 1=~
!
=
w

—* The corresponding bit of f in the hash bitmap is 0
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Query with Both Constraints

s Find all frequent pattern with support no less than 50% and containing items f
and p
+  Minimum support constraint : only need to visit entry p, f, mand a
+ [tem cor:straj nt: only need to visit entry ¢, d and p

¥
| c:3| d:3| p:4| f:5 | m:5| a6 |
T

No pattern satisfies
both constraints

Construction Algorithm

« Pattern growth approach
+ Construct a conditional database D, for each frequent
pattern p such that all the patterns with p as prefix can be
mined form D,
+ For each conditional database D,

e First Scan : count frequent items
e Second scan : construct a new conditiona database for each frequent item
e Mineeachindividual conditional database

+ The original transaction database D can be viewed as the
conditional database of pattern p=

+ Conditional database representation
* adaptive
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Removing Non-closed Patterns

+ A pattern p is closed iff two conditions hold

¢ Thereisno previously mined pattern which is a proper superset
of p and has the same support as p.

*+ All theitemsin D, has alower support than p.

< Two pruning conditions to save mining cost
¢ |f condition 1 does not holds, then none of the patterns mined
from D, can be closed. (Use CFP-tree to do the checking)

+ If thereexist anitemiin D, such that i appearsin every
transaction of D, then the patterns containing p but no i can be

ignored. (Easy)
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A Running Example
< Count frequent items and create the first CFP-tree node
< Construct conditional databases for frequent items

AQ%

Dl Transactions 1‘ c:3 | d:3 | p:4 | f:5 | m:S‘ a6 ‘
L by CFP-tree
2 a,d, e f,g
3 a, b fmn ID | Transactions
4|lacefmp 1]c, p.f.m a
5 d.f,np 2 d.f.a
6| a,c,hmp 3 f.m,a
7 a,d m,s 4|cpfma

5 dp.f

6| c.p.m a

7 d m a
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A Running Example (contd.)

<+ MineonD,
+ pistheonly child of ¢, anew node (2) is created as the child of ¢

+ m and a have the same support as ¢, anode (3, 4) is created for each of them
+ Push-right D,

1‘ c:3 | d:3 | p:4 | f:5 ‘ m:5‘ a6 ‘

Dd Dp Df
CFP-tree
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Experiment Setting

+ Test environment
¢ 2.26GHz Pentium IV, 512MB memory

¢ Window XP
< Datasets
Datasets size #Trans #ltem AvgTL MaxTL
BMS-POS 19.20MB 515,597 1657 6.53 164
Pumsb 14.75MB 49,046 2113 74.00 74
T20110D1000k 89.57MB 987,139 8876 20.23 54

BMS-POS is obtained from kdd cup 2000 website, and it contains click-stream data
Pumsb comes from UCI machine learning repository, and it contains census data
T20110D1000k is generated by IBM synthetic dataset generator
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Querying Processing Time

< Queries with minimum support constraints

Dataset: BMS-POS (0.02%)
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Dataset: pumsb (50%)
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Querying Processing Time (contd.)

Dataset: BMS-POS (0.02%)
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< Queries with item constraints

Dataset: pumsb (50%)
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Construction Time
< Compare with CLOSET+ agorithm [kdd03]

Dataset: BMS-POS

Dataset: pumsb

Dataset: T20110D1000k
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« ALL : al frequent patternsin flat format
« CLOSE: frequent closed patternsin flat format
<+ CFP: CFP-tree
Dataset: BMS-POS Dataset: pumsb Dataset: T20110D1000k
10000
1000 ALL —— ALL —— 1000 \ ALL ——
CFP — = - 1000 | CFP — = - ] 100 SO CFP — = - ]
= \
100 x\ {1 . )
) N @ 100 F {4 @ 10 x\ ]
= % 2 = N\
] N ] g \
n = D 10 F E D 1 W\ 4
10 \\\ 3 \
Nty AL 1 ]
TS N o1 M )
= N L]
1 0.01
0.02 0.04 0.06 0.08 0.1 0.12 50 55 60 65 70 75 80 85 005 01 015 02 0.25
Minimum Support(%) Minimum Support(%) Minimum Support(%)
BMS-POS pumsb T20110D1000k
MO - oecusT | 52




Conclusion

<+ We summarized the approaches in frequent itemset
mining

< Mining frequent itemsets from very large
transactional databases: Search space partitioning

< To support efficient mining of frequent itemsets with

different support and containing different items: CFP
trees

< Mining frquent itemset and itemsets from data
streams — another challenge
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