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Frequent Itemset Mining: Motivation

Frequent itemset: pattern that occurs frequently in the 
database
Applications

Market-basket data analysis
Web log mining
DNA sequence analysis

Foundations of many data mining tasks
Association rule, correlation
Associative classification
Sequential patterns, temporal or cyclic association, partial 
periodicity patterns, episodes
Iceberg cube computation
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Frequent Itemset Mining: Problem Statement

Given 
A set of items Ι = {a1, a2, …, an}
A transaction database D = {t| t ⊆ Ι}. 
support (p) = || {t| p ⊆ t} || . 
minimum support threshold min_sup

Output 
Every itemset p such that support(p)/||D|| >= min_sup

Apriori property (anti-monotone property)
If an itemset is not frequent, then none of its superset can be 
frequent
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Frequent Itemset Mining: An Example

40%

TID Transactions
1 a, b, c, f, m, p
2 a, d, e, f, g
3 a, b, f, m, n
4 a, c, e, f, m, p
5 d, f, n, p
6 a, c, h, m, p
7 a, d, m, s

Frequent Itemsets
c:3, d:3, p:4, f:5, m:5, a:6
cp:3, cm:3,ca:3, pf:3, pm:3, 
pa:3, fm:3, fa:4, ma:5

cpm:3, cpa:3, cma:3, 
pma:3, fma:3

cpma:3

Transaction database
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Frequent Itemset Mining: Challenges

Challenge
The size of search space is exponential to the number 
of items in the database

Typical approaches
Candidate generate-and-test approach
Filter-and-refine approach
Vertical Mining approach
Pattern growth approach
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Candidate Generate-and-test Approach

Basic Apriori algorithm [VLDB’94]
scan database and count frequent 1-itemsets
In subsequent iterations

• Pairs of frequent k-itemsets are joined to form candidate (k+1)-itemsets
• Scan database to verify candidate (k+1)-itemsets and generate frequent 

(k+1)-itemsets.

Drawbacks
Scan database multiple times

• equal to the maximal length of frequent itemsets

Generate and test a large number of candidate itemsets
• Subset matching is expensive
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Speeding up Apriori algorithm
DHP [SIGMOD’95]

prune candidate itemsets using hashing
trim both number of transactions and number of 
items in each transaction after each iteration

DIC [SIGMOD’97]
count support for an itemset shortly after all of its 
subsets are proved to be frequent rather than wait until 
next database scan

In worst case, the number of database scan is still 
equal to the maximal length of frequent itemsets
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Filter-and-refine Approach
Framework

In the filter phase, generate candidate itemsets
In the refine phase, scan database to verify the 
validity of each candidate itemsets
Usually scans database only twice

Drawbacks
Generate and test a large number of  candidate 
itemsets
The number of candidate itemsets generated can 
be larger than that of the basic Apriori algorithm
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Filter-and-refine Algorithms
Partition [VLDB’95]

Partition the database into disjoint partitions such that each 
partition can be mined in main memory. All the itemsets that 
are frequent in at least one partition form the candidate itemsets.  

Sampling [VLDB’96]
In the first pass, pick a random sample to compute frequent 
itemsets along with a negative border.
In the second pass, generate all frequent itemsets.

BBS (Bit-sliced Bloom-filtered Signature file) [ICDE’02]
In the filter strategy, the candidate patterns are obtained by 
scanning BBS instead of the database. 
Tuning the size of BBS for optimal performance is critical
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Vertical Mining
Each itemset is associated with a tid list or tid bitmap

tid list: list of transaction ids containing that itemset
support counting is performed by tid list/bitmap join, 
which is more efficient than subset matching

drawbacks: 
Constructing and maintaining a large number of tid
list/bitmap
Not scale well with respect to the number of transactions

Optimizations
Tid bitmap compression
Use diffset to reduce size
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Pattern Growth Approach
Basic idea

Grows a frequent itemset from its prefix to avoid candidate generation and test
Using divide-and-conquer methodology

Framework
Find all frequent items in the database, I = {a, b, c, d}
Divide the search space into disjoint sub-spaces:

• Frequent Itemsets containing a
• Frequent itemsets containing b but no a
• Frequent itemsets containing c but no a, b
• Frequent itemsets containing d but no a, b, c

Accordingly, the database is divided into partitions (conditional database) after 
removing infrequent items

• All transactions containing a
• All transactions containing b (item a is eliminated)
• All transactions containing c (items a and b are eliminated)
• All transactions containing d (items a, b and c are eliminated)

Mine each conditional database recursively
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Pattern Growth Approach---Key Factors

Total number of conditional databases
Size of individual conditional database
Conditional database representation format

Tree-based structure: low traversal cost but high construction 
cost
Array-based structure: low construction cost but high traversal 
cost

Conditional database construction strategy 
Physical: expensive but save traversal cost
Pseudo: cheap but incur high traversal cost

Conditional database traversal strategy
Top-down 
Bottom-up

Depends on item 
search order
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Pattern Growth Algorithms
tree 
traversal

ConDB
construction

CondDB
format

item search 
order

algorithms

adaptiveadaptiveFP-treedynamic 
frequency

CLOSET+

top-downphysicaladaptivedynamic 
frequency

AFOPT

top-downpseudoPP-treestatic 
lexicographic

PP-mine

bottom-upadaptiveadaptiveadaptiveOP

-pseudohyper-
structure

static 
lexicographic

H-mine

bottom-upphysicalFP-treedynamic 
frequency

FP-growth

-adaptivearraystatic
lexicographic

Tree 
Projection
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Mining Frequent Closed/Maximal Itemsets

The complete set of frequent itemsets can be very large on 
dense datasets

If a length-100 itemset is frequent, then all of its 2100-1 
subsets are frequents.  Infeasible!

Solution: mining frequent closed/maximal itemsets. 
An itemset is closed if all of its supersets are less frequent than 
it
An itemset is maximal if none of its supersets is frequent
The number of frequent closed/maximal itemsets can be 
substantially smaller than the number of frequent itemsets

AIS Apriori DIC

DHP

Partition

MaxMiner

TreeProjection

FP-growth AFOPT

H-Mine

OP

Eclat VIPER diffEclat

BBS

2001 2002 200320001999199819971996199519941993

DepthProject

MAFIA

A-close

CLOSET

CHARM

ClOSET+

GenMax

SIGMOD VLDB

SIGMOD

SIGMOD

SIGMOD

SIGMOD

SIGMOD

VLDB

KDDKDD

KDD

KDD

KDD

ICDE

ICDE

DMKD

ICDT

SDM

ICDM

2001 2002 200320001999199819971996199519941993

FI
FCI
MFI

Candidate generate-and-test

Pattern growth

ICDM

Vertical mining
Filter-and-refine

Sampling
VLDB
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Previous work---summary
Candidate generate-and-test algorithms

Scan database multiple times
Generate and test a large number of candidate itemsets

Vertical mining algorithms
Not scalable well with respect to the number of transactions

Pattern growth algorithms
Construct and traverse a large number of conditional databases
Existing algorithms mainly focus on optimizing in-memory 
performance

A recent comparative study (FIMI’03 workshop) shows that 
few existing algorithms can scale-up to very large databases 
with millions of transactions. 
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Our Work -- Overview
SSP: a scalable algorithm for mining frequent itemsets from 
very large databases with millions of transactions

Partitioning database according to search space
Specially designed for out-of-core mining
Taking memory constraints into consideration in algorithm 
design
Managing memory in fully dynamic fashion

CFP-tree: a compact disk-based structure for storing and 
querying frequent itemsets

Stores only frequent closed itemsets
Supports three basic types of queries

• Queries with minimum support constraints
• Queries with item constraints
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Partition Algorithm [VLDB’95]

Basic idea
If we divide the database into several disjoint partitions, then a frequent 
itemset must be frequent in at least one partition.

Algorithm
Partition the database into disjoint partitions such that each partition can be 
mined in main memory. 
All the itemsets that are frequent in at least one partition form the candidate 
itemsets. The whole database is scanned to find the exact set of frequent 
itemsets

Pros & cons 
+ Scan database only twice
- Duplicate computation cost
- It is very hard to accurately estimate the amount of memory consumed by the 

mining algorithm when partitioning the database.
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SSP: Search Space based Partitioning

It is based on the pattern growth approach, and partitions the 
database according to the search space of the frequent itemset 
mining problem. 
Different partitions share data but do not share frequent 
itemsets. 
+ The frequent itemsets mined from each partition are final, 

therefore we do not need to scan the whole database to verify 
their supports. 

+ We need to keep only data in memory. 
- The total size of the partitions can be much larger than the size 

of the database 
Main issue: utilize the data overlap among partitions to reduce 
I/O cost. 
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SSP Algorithm---framework
SSP Algorithm (l, Dl, min_sup)
1. Scan Dl to count frequent items, and sort them in descending frequency order, 

denoted as F= {a1, a2, …, an}
2. for (every item a ∈F)

Dl∪a = ∅;
3. For (every transaction t ∈ Dl ) //construct conditional database

1. Remove infrequent items from t, and sort remaining items according to their 
orders in F;

2. Let a be the first item of t, insert t into Dl∪a .
4. for (j=1;j<=n;j++)

1. Output s = l∪aj;
2. SSP(s, Ds, min_sup);
3. for (every transaction t ∈ Ds)  //push-right step

1. t = t - {a};
2. Let a' be the first item of t, insert t into Dl∪a’ .
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SSP Algorithm--- Features
item search order: ascending frequency order

The most infrequent item has the largest candidate extension 
set, with the increasing of frequency, the number of candidate 
extensions decreases

• Balances the size of conditional databases thus ensures that every time a small 
conditional database is pushed right

• Balances the size of the sub search spaces thus ensures that the memory 
consumption for mining the conditional databases cannot be large

Conditional database representation format: adaptive
Sparse : array
Dense : prefix-trie
Extremely dense: bucket counting

Conditional database construction strategy
Physical construction 
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SSP Algorithm --- Main Issue
A transaction can belong to multiple conditional databases, but at any time 
it can belong to one and only one conditional database. 

The total size of the conditional database is can be much larger than the original 
database. On average, Lavg/2 times larger, where Lavg is the average transaction 
length.
The space needed for holding all the conditional databases cannot be larger than 
the original database.

If all the conditional databases cannot be held in memory, a transaction 
may be write to and read from disk many times, which incurs high I/O 
cost. 
Main issue: reducing I/O cost by utilizing the transaction sharing among 
conditional databases

SSP-naïve
SSP-static
SSP-dynamic
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SSP- Naïve algorithm
It is realistic to assume that a single conditional database and
all its descendant conditional databases can be held in 
memory

The amount of main memory available nowadays is very large.
Ascending frequency order: ensures that a single conditional database is much 
smaller than the original database, and the size of its descendant conditional 
databases also shrinks quickly.
If a single conditional database can fit in memory but there is no enough space 
for holding all of its descendant conditional databases, we can use the pseudo-
construction strategy. 
If a single conditional database cannot be held in main memory, we can 
recursively apply the out-of-core algorithm on the conditional database.
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SSP- naïve Algorithm

Basic idea:Keep one conditional database in memory 
at one time.

When constructing new conditional databases from the 
original transaction database, we keep only the first 
conditional database in memory and write all the others on 
disk.
When the mining on a conditional database in memory is 
finished, some of the transactions in it will be written to other 
conditional databases. 
One optimization is that if a transaction belongs to the next 
conditional database to be mined, we keep it in memory.
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SSP- ntatic Algorithm
It is a waste of memory to keep only one conditional database in memory 
given the large amount of memory available nowadays. 
Solution

keep adjacent conditional databases into memory as more as 
possible---How many?

Observation:
If we keep conditional databases Dai+1, …, Dai+m in memory, 
the space required for storing these m conditional databases is 
smaller than the total size of these m conditional databases 
because of transaction sharing. 

To accurately calculate the borders between partitions, we use a matrix C, 
called differential matrix, to record the differences among conditional 
databases. 
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SSP- dynamic Algorithm
SSP-static Algorithm

requires extra I/O cost to partition the database. 
uses the total length of the transactions in a conditional 
database as the estimation of the size of the conditional 
database, which is a a rather loose upper bound when the 
conditional database is dense.

SSP-dynamic algorithm
Adopt a lazy writing strategy to fully utilize memory: 
writes conditional databases on disk only when new 
structures are to be created but there is no memory 
available
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SSP-dynamic algorithm
The search space is traversed in depth-first-order, therefore 
the exact access order of the conditional databases is known. 

put the conditional databases that will be accessed last on disk
to release memory for new data.
Maintain an active stack S to trace the conditional 
databases that have not been processed yet at every level. 

• Conditional database dumping order: from bottom to top, from right to 
left.

It is inefficient to release memory for every transaction to be 
inserted.

Solution: estimate the size of memory required for future 
mining when releasing memory. 
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SSP Algorithm---Summary
SSP-naïve

Utilizes the overlap between adjacent conditional 
databases to reduce I/O cost. 

SSP-static
Utilizes the overlap between adjacent partitions to reduce 
I/O cost. 
Requires an additional database scan to compute 
differential matrix

SSP-dynamic
Uses a lazy-writing strategy to guarantee the full 
utilization of the memory. 
Dynamic in nature
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Experiment Setting
Test environment

1.0GHz Pentium III, 256MB memory
Linux mandrake

Datasets: generated by IBM dataset generator 

31.188847061,933,520277MBT30I20D2mN5kP5k

39.958489121,999,994374MBT40I10D2mN10kP10k

61

36

AvgTL

21.82

10.14

MaxTL

9942,719,116223MBT20I15D3mN1kP10k

76924,922,589238MBT10I4D5mN10kP10k

#Item#TranssizeDatasets
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Dataset Generating Parameters
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Dataset Generating Parameters
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Dataset Generating Parameters
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Memory Size
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CFP-Tree---Motivation
Frequent itemset mining

A time-consuming process
• I/O intensive : scan database multiple times
• CPU intensive : count supports for a large number of 

itemsets
A repeated process

• Different database and/or applications require different 
parameters

• Often no guidelines for choosing proper parameters
Solution: mining once and using many times

CFP-tree: a compact structure for storing and querying 
frequent itemsets
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CFP-tree---Overview

A compact structure for storing frequent itemsets
Stores only frequent closed itemsets to reduce tree 
size

Supports three basic types of queries
Queries with minimum support constraints

• Find all itemsets with support no less than s%
Queries with item constraints

• Find all frequent itemsets containing items {a1, a2,…am}

Queries with both support and item constraints
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CFP-tree Structure

Items in a node are sorted in ascending order of their frequencies
An entry stores: 

Item id, 
Support
A child pointer 
A hash bitmap: to indicate whether an item appears in the subtree

Frequent 
Closed Itmesets

d:3, p:4, f:5, a:6
pf:3, fa:4, ma:5
fma:3
cpma:3

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5
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CFP-tree---Properties

Apriori Property
The support of entry cannot be greater than its ancestors. 

Left Containment Property
The item of an entry E can only appear in the subtrees pointed by 
entries before E or in E itself

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5
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Query With Support Constraint
Find all frequent patterns with support no less than 50%

Apriori property : only entry p and entries after p need to be visited

Frequent Patterns:

{ p } : 4
{ f } : 5
{ f, a } : 4
{ m, a} : 5
{ a } : 6

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5
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Query with Item Constraint
Find all frequent patterns containing item f and p

Left containment property: only p and entries before p need to be visited

Frequent Patterns:

{ p, f } : 3

The corresponding bit of f in the hash bitmap is 0

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5
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Query with Both Constraints
Find all frequent pattern with support no less than 50% and containing items f
and p

Minimum support constraint : only need to visit entry p, f, m and a
Item constraint: only need to visit entry c, d and p

No pattern satisfies 
both constraints

m:3 m:3 a:4

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

f:3

a:3

a:5
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Construction Algorithm 
Pattern growth approach

Construct a conditional database Dp for each frequent 
pattern p such that all the patterns with p as prefix can be 
mined form Dp
For each conditional database Dp
• First Scan : count frequent items
• Second scan : construct a new conditional database for each frequent item
• Mine each individual conditional database

The original transaction database D can be viewed as the 
conditional database of pattern p=∅

Conditional database representation
adaptive
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Removing Non-closed Patterns

A pattern p is closed iff two conditions hold
There is no previously mined pattern which is a proper superset 
of p and has the same support as p.
All the items in Dp has a lower support than p.

Two pruning conditions to save mining cost
If condition 1 does not holds, then none of the patterns mined 
from Dp can be closed. (Use CFP-tree to do the checking)
If there exist an item i in Dp such that i appears in every 
transaction of Dp, then the patterns containing p but no i can be 
ignored. (Easy)
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A Running Example
Count frequent items and create the first CFP-tree node

40%
ID Transactions

1 a, b, c, f, m, p
2 a, d, e, f, g
3 a, b, f, m, n
4 a, c, e, f, m, p
5 d, f, n, p
6 a, c, h, m, p
7 a, d, m, s

ID Transactions

1 c, p, f, m, a
2 d, f, a
3 f, m, a
4 c, p, f, m, a
5 d, p, f
6 c, p, m, a
7 d, m, a

p:3

c:3

p:1

d:3

a:1

m:1

a:2

m:2

f:2 f:1

a:1a:1f:1

m:1

a:1

m:1

f:1

Dc DfDd

Construct conditional databases for frequent items

CFP-tree

c:3 d:3 p:4 f:5 m:5 a:61
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A Running Example (contd.)
Mine on Dc

CFP-tree

c:3 d:3 p:4 f:5 m:5 a:61

m:3

a:3

3

4

p:32

p is the only child of c, a new node (2) is created as the child of c
m and a have the same support as c, a node (3, 4)  is created for each of them

c:3

p:3

a:1

m:1

a:2

m:2

f:2

Dc

a:1

m:1

f:1

Df

p:1

d:3

f:1

a:1a:1f:1

m:1

Dd

Push-right  Dc
Mine on Dd, and so on…

Dp

f:35

m:3 a:46

a:37

a:38
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Experiment Setting
Test environment

2.26GHz Pentium IV, 512MB memory
Window XP

Datasets

20.23

74.00

6.53

AvgTL

54

74

164

MaxTL

8876987,13989.57MBT20I10D1000k

211349,04614.75MBPumsb

1657515,59719.20MBBMS-POS

#Item#TranssizeDatasets

BMS-POS is obtained from kdd cup 2000 website, and it contains click-stream data
Pumsb comes from UCI machine learning repository, and it contains census data
T20I10D1000k is generated by IBM synthetic dataset generator 
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Querying Processing Time
Queries with minimum support constraints
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Querying Processing Time (contd.)
Queries with item constraints
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Construction Time
Compare with CLOSET+ algorithm [kdd03]
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CFP-tree Size
ALL : all frequent patterns in flat format
CLOSE: frequent closed patterns in flat format
CFP : CFP-tree
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Conclusion

We summarized the approaches in frequent itemset
mining
Mining frequent itemsets from very large 
transactional databases:  Search space partitioning
To support efficient mining of frequent itemsets with 
different support and containing different items: CFP 
trees
Mining frquent itemset and itemsets from data 
streams – another challenge


