InfoMiner: Mining Surprising Periodic Patterns

Jiong Yang
IBM Watson Research Center

jiyang@us.ibm.com

ABSTRACT

In this paper, we focus on mining surprising periodic patterns
in a sequence of events. In many applications, e.g., compu-
tational biology, an infrequent pattern is still considered very
significant if its actual occurrence frequency exceeds the prior
expectation by a large margin. The traditional metric, such as
support, is not necessarily the ideal model to measure this kind
of surprising patterns because it treats all patterns equally in
the sense that every occurrence carries the same weight to-
wards the assessment of the significance of a pattern regard-
less of the probability of occurrence. A more suitable mea-
surement, information, is introduced to naturally value the
degree of surprise of each occurrence of a pattern as a contin-
uous and monotonically decreasing function of its probability
of occurrence. This would allow patterns with vastly different
occurrence probabilities to be handled seamlessly. As the ac-
cumulated degree of surprise of all repetitions of a pattern, the
concept of information gain is proposed to measure the over-
all degree of surprise of the pattern within a data sequence.
The bounded information gain property is identified to tackle
the predicament caused by the violation of the downward clo-
sure property by the information gain measure and in turn
provides an efficient solution to this problem. Empirical tests
demonstrate the efficiency and the usefulness of the proposed
model.

1. INTRODUCTION

Periodic pattern discovery is an important problem in min-
ing time series data and has wide applications. A periodic
pattern is an ordered list of events, which repeats itself in
the event sequence. It is useful in characterizing the cyclic
behavior of the time series. As a newly developed research
area, most previous work on mining time series data addresses
the issue by utilizing the support (number of occurrences) as
the metric to identify the important patterns from the rest
[4, 13]. A qualified pattern in the support model must occur
sufficient number of times. In some applications, e.g., market
basket, such a model is proved to be very meaningful and im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Wei Wang
IBM Watson Research Center

wwl@us.ibm.com

Philip S. Yu

IBM Watson Research Center
psyu@us.ibm.com

portant. However, in some other applications, the number of
occurrences may not represent the significance of a pattern.
Consider the following examples.

o Web server load. Consider a web server cluster consisting
of 5 servers. The workload on each server is measured
by 4 ranks: low, relatively low, relatively high, and high.
Then there are 4° = 1024 different events, one for each
possible combination of server states. Some preliminary
examination of the cluster states over time might show
that the state fluctuation complies with some periodic
behavior. Although the high workload on all servers may
occur at a much lower frequency than other states, pat-
tern(s) involving it may be of more interests to some sys-
tem administrators if the occurrence of such pattern(s)
contradicts the prior expectation.

e FEarthquake. Earthquakes occur very often in California.
It can be classified by its magnitude and type. Scientist
may be interested in knowing whether there exists any
inherent seismic period so that prediction can be made.
Note that any unidentified seismic periodicity involving
big earthquake is much more valuable even though it
occurs at a much lower frequency than smaller ones.

In the above examples, we can see that users may be inter-
ested in not only the frequently occurred patterns, but also the
surprising patterns (i.e., beyond prior expectation) as well. A
large number of occurrences of an “expected” frequent pattern
sometimes may not be as interesting as a few occurrences of
an “expected” rare pattern. The support model is not ideal
for these applications because, in the support model, the oc-
currence of a pattern carries the same weight (i.e., 1) towards
its significance, regardless of its likelihood of occurrence. Intu-
itively, the assessment of significance of a pattern in a sequence
should take into account the expectation of pattern occurrence
(according to some prior knowledge). Recently, many research
has been proposed [1, 3, 5, 6, 8, 9, 10, 11, 12, 15] towards this
objective. We will furnish an overview in the next section. In
this paper, a new model is proposed to characterize the class
of so-called surprising patterns (instead of frequent patterns).
We will see that our model not only has a solid theoretical
foundation but also allows an efficient mining algorithm.

The measure of surprise should have the following proper-
ties. (1) The surprise of a pattern occurrence is anti-monotonic
with respect to the likelihood that the pattern may occur by
chance (or by prior knowledge). (2) The metric should have
some physical meaning, i.e., not arbitrary created. It is fortu-
nate that the information metric [2] which is widely studied
and used in the communication field can fulfill both require-
ments. Intuitively, information is a measurement of how likely

a pattern will occur or the amount of “surprise” when a pat-
tern actually occurs. If a pattern is expected to occur fre-
quently based on some prior knowledge or by chance, then an
occurrence of that pattern carries less information. Thus, we
use information to measure the surprise of an occurrence of
a pattern. The information gain metric is introduced to rep-
resent the accumulated information of a pattern in an event
sequence and is used to assess the degree of surprise of the
pattern. In the remainder of this paper, we refer to this model
as the information model.

The information model is different from the support model.
For a given minimum information gain threshold, let ¥ be the
set of patterns that satisfy this threshold. Under the support
model, in order to find all patterns in ¥ when event occur-
rence frequencies are vastly different, the minimum support
threshold has to be set very low. A major problem could rise
from this: too many patterns discovered. This means that
the patterns with most information gain are buried in a sea
of patterns with relatively low information gain. This could
be a large burden for the end user to distinguish the surpris-
ing patterns (i.e., patterns with high information gain) from
the rest. In addition, since a large number of patterns have
to be discovered, the support model may yield an inefficient
algorithm.

Although the information gain is a more meaningful met-
ric for the problems addressed previously, it does not preserve
the downward closure property (as the support does). For ex-
ample, the pattern (a1, a2) may have enough information gain
while both (a1, *) and (*,a2) do not. The x symbol repre-
sents the “don’t care” position. We cannot take advantage of
the standard pruning technique (e.g., Apriori algorithm) de-
veloped for mining association rules and temporal patterns [4].
Fortunately, we are able to identify the bounded information
gain property where patterns with inextensible prefixes could
not be surprising (given some information gain threshold) and
can be excluded from consideration at a very early stage. This
motivates us to devise a recursive algorithm as the core of our
pattern discovery tool, InfoMiner. In summary, this paper has
the following contributions.

e We propose a new mining problem that is to find sur-
prising periodic patterns in a sequence of data.

e The concepts of information and information gain are
proposed to measure the degree of surprise of the pattern
exhibited in a sequence of data.

e Since the downward closure does not hold with informa-
tion gain, we devise an efficient algorithm to mine the
surprising patterns and associated subsequences based
on the bounded information gain property that is pre-
served by the information gain metric.

The remainder of this paper is organized as follows. Some
related work is discussed in Section 2. We present the infor-
mation model in Section 3. Section 4 discusses the detailed
algorithm of finding patterns whose information gain is above
a certain threshold. Experimental results are shown in Section
5. Finally, we draw the conclusion in Section 6.

2. RELATED WORK

In this section, we provide a brief overview of recent ad-
vances that is closely related to our work presented in this
paper. There is much work in mining periodic patterns[4,
7, 13]. Despite the difference in problem formulation, most

work adopted the support as the measure of interestingness
(or significance) and aimed at discovering frequent patterns.
Recently, many efforts have been carried out to address the po-
tential disadvantages associated with the support model and
to propose alternative solutions. Due to space limitations, we
are focusing on the related work of models of interestingness.

Multiple supports scheme was introduced by Liu et. al. [6]
and later extended by Wang et al. [12] to find itemsets which
do not occur frequently overall, but have high correlation to
occur with some other items. The support threshold to qualify
a frequent itemset can be specified as a fraction of the min-
imum support of all items [6] or subsets of items [12] in the
itemset. This variable support has similar effect as the infor-
mation gain introduced in this paper. However, there exists
some fundamental difference between these two concepts. For
example, if the support of item A, B, and C is 0.01, 0.02, 0.8,
respectively, then the support threshold to qualify itemset AB
and AC is the same. Nevertheless, the itemset AC is expected
to occur more frequently than AB because the support of C
is much larger than that of B. This aspect was not fully taken
into account by the multiple support model. In contrast, the
information gain metric proposed in this paper would capture
the difference of occurrences between B and C.

Mining patterns that are statistically significant (rather than
frequent) becomes a popular topic. Brin et al. [3] first intro-
duced the concept of correlation and it was shown that in many
applications the correlation measurement can reveal some very
important patterns. The Chi-squared test was used to test the
correlation among items. Instead of explicitly enumerating all
correlated itemsets, the border comprising the set of minimal
correlated itemsets' is identified, and no further distinction is
made on the degree of correlation of itemsets above the bor-
der (i.e., supersets of some itemset on the border). This model
sometimes becomes sub-optimal. As shown in Figure 1, item-
sets A and B are highly correlated but C is independent of
them?. In addition, {4, B, C, D} is also highly correlated. We
can view that the degree of correlation of {A, B, C} is not as
strong as that of {4, B} and {4, B,C,D}. This observation
can also be confirmed by the Chi-squared test®. In many appli-
cations, users are only interested in the itemsets such as {A, B}
and {4, B,C, D}, but not {A, B, C}. However, [3] cannot dis-
tinguish between {A, B,C} and {A, B,C, D} once {A,B} is
identified as a correlated itemset. Another potential draw-
back of this model is the expensive computation required by
this model. The running time of all patterns with é-correlated
items is O(n x |CAND| x min{n,2'}) where n and |[CAND]|
are the number of transactions and the number of candidates
at ith level, respectively. To overcome these drawbacks, Oates
et al. [9] proposed models for statistical dependencies using
G statistic and devised randomized algorithms to produce ap-
proximate results. In contrast, our model not only can suc-
cessfully identify {A, B} and {4, B,C, D} without including
{A, B,C} but also leads to a much more efficient determinis-
tic algorithm.

Another important advance is accomplished in mining so-
called unezpected patterns. Berger et al. [1] proposed a prob-
abilistic measure of interestingness based on unexpectedness

1A minimal correlated itemset is a correlated itemset whose
subsets are all independent.

>Prob(AB) x Prob(C) = 5 x 2 = Prob(ABC).

3In general, the chi-squared test requires a large sample. For
the demonstration purpose only, we assume that the chi-
squared test is valid in this example.

Transaction 1D Items
1 ABCD
ABFG

CEGF

ABCD

CEGH

Ol alh W N

CEFH

Figure 1: An example of transaction set

in the context of temporal logic, whereby a pattern is deemed
interesting if the ratio of the actual number of occurrences
of the pattern exceeds the expected one by some user defined
threshold. Solving the problem in its general frame is in nature
NP-hard and hence some heuristics are proposed to produce
an approximate answer. Qur model presented in this paper
can in fact achieve a similar objective but enables an efficient
solution without sacrificing the accuracy.

3. MODEL OF SURPRISING PATTERNS

In this paper, we adopt the general model for periodic pat-
terns proposed in [4] with one exception: Instead of finding
frequent patterns®, our goal is to discover surprising pat-
terns in an event sequence. Let E = {ai,a2,...} be a set
of distinct events. The event sequence is a sequence of events
in E. A periodic pattern is a list of [events that may oc-
cur recurrently in the sequence with period length I. The
information carried by an event a; (a; € E) is defined to
be I(a;) = —log z Prob(a;) where | E | and Prob(a;) are
the number of events in E and the probability that a; oc-
curs, respectively. The probability Prob(a;) can be assessed
in many ways. Without loss of generality, we adopt the fol-
lowing way to assess the information carried by an event.
Prob(a;) = N“"’TD(“') for all a; € E where Nump(a;) and
N are the number of occurrences of the event a; in an event
sequence D and the length of D, respectively. This means
that an occurrence of a frequent event carries less informa-
tion/surprise than a rare event. Note that this also coincides
with the original intention of information in the data com-
munication community. We shall show later that this gives us
the opportunity to handle patterns with divergent probabilities
seamlessly. Theoretically speaking, the base of the logarithm
function can be any real number that is greater than 1. Typ-
ically, | E | is chosen to be the base to play a normalization
role in the computation (i.e., I(a;) = 1 if Prob(a;) =). For
example, the sequence in Figure 2 contains 6 different events
a1, a2, as, a4, as, and as. Their probabilities of occurrence
and information are shown in Table 1.

A pattern of length [is a tuple of [events, each of which
is either an event in E, or the eternal event (represented by
symbol %). An eternal event is a virtual event that matches
any event in E and is used to represent the “don’t care” posi-
tion in a pattern. By definition, the information of the eternal
event * is I(x) = —log g Prob(x) = 0 since Prob(*) = 1. An
intuitive interpretation is that the occurrence of an event that
is known to be always true does not provide any “new informa-
tion” or “surprise”. A pattern P with length [is in the form

4For a pattern s in a sequence di,ds, ...,dy, the frequency
count is defined as | {i | 0 < i < X, and the string s is true in

rﬂa
dijs|+15 - - - difs|+/s]} |-

Table 1: Probability of Occurrence and Information

Event | Probability Information
ai 2 =015 | —log,(0.15) = 1.06
as = =020 | —log,(0.20) = 0.90
as 2 =0.30 | —log,(0.30) = 0.67
a4 = =0.125 | —logs(0.125) = 1.16
as £ =015 | —logg(0.15) = 1.06
as & =0.075 | —1og(0.075) = 1.45
of (p1,p2,...,p1) where p; € EU {*} (1 <i <) and at least

one position has to be filled by an event in E°. P is called
a singular pattern if only one position in P is filled by an
event in E and the rest positions are filled by *. Otherwise, P
is referred to as a complex pattern. For example, (*,as, *)
is a singular pattern of length 3 and (a2, as, *, a2) is a complex
pattern of length 4. Note that an event may have multiple
occurrences in a pattern. As a permutation of a list of events,
a pattern P = (pi1,p2,...,p) will occur with a probability
Prob(P) = Prob(p1) x Prob(p2) X -+ X Prob(p;) in a random
event sequence if no advanced knowledge on correlation among
these events is assumed. Then the information carried by P is
I(P) = —log g Prob(P) = I(p1) + I(p2) +--- + I(p:). It fol-
lows directly that the information of a singular pattern always
equals to the information of the event specified in the pat-
tern. This property provides a natural bridge between events
and patterns. For example, I((*,as,*,*)) = I(as) = 1.45 and
I((az,as,*,*)) = I(a2) + I(as) = 0.90 + 1.45 = 2.35 according
to Table 1.

Given a pattern P = (p1,p2,...,p:) and a segment S of [
events si,S2,...,8, we say that S supports P if, for each
event p; (1 < i < 1) specified in P, either p; = * or p; =
s; is true. The segment as,as,as,as supports the pattern
(a2,a6,*, *) while the segment a1,as,a4,as does not. To as-
sess whether a pattern of length [is surprising in an event
sequence D, D is viewed as a list of disjoint contiguous seg-
ments, each of which consists of [events. The number of seg-
ments that support P is also called the support of P (denoted
by Support(P)). The event subsequence® consisting of the list
of segments that support P is called the projected subse-
quence of D on P. In Figure 2, the event sequence consists of
40 events. When mining periodic patterns with [= 4, it can be
viewed as a list of 10 segments, each of which contains 4 events.
The support of (a2, as, *,*) is 3 in the sequence and the pro-
jected subsequence on (a2, as, *, *) is a2, as, as, a2 az, as, as, a2,
as,06,02,02. As a measurement of the degree of surprise of a
pattern P in an event sequence D, the information gain of
P in D is defined as G(P) = I(P) x (Support(P) — 1). Since
our objective is to mine surprising periodic patterns, an event
combination appearing in the event sequence which never re-
curs is of little value in this problem domain. Therefore, in
the proposed model, only recurrences of a pattern will have
positive contribution to the information gain. Support(P)—1
is indeed the number of recurrences of P. In the rest of the
paper, we will use Repetition(P) to denote it. For example,
Repetition((az, as, *,%)) = 3 — 1 = 2 and G((a2,as, *, %)) =
2.35 x 2 =4.70 in Figure 2.

Similar to the support model, an information gain thresh-

5This requirement is employed to exclude the trivial pattern
(*,%,...,*) from being considered.

8Given two sequences D and D', D is a subsequence of D’
if D can be obtained by removing some events in D’.

event sequence &) a3 8, a5a] 8, 83 A3 8 5 A3 A Y A3 YA A3 W WA P W AYH A3 AP A A P Y A Y

projected subsequenceof (@2 8 * *)

858388 85 85 A a 85 A A

a a

Figure 2: Event sequence and projected subsequence

old, min_gain, is specified by the user to define the minimum
information gain to qualify a surprising pattern. Given an
event sequence and an information gain threshold, the goal is
to discover all patterns whose information gains in the event
sequence exceed the threshold. Obviously, the proper value of
this threshold is application dependent and may be specified
by a domain expert. A user may use the following heuristic to
choose the value of min_gain. If a pattern with probability p
is regarded as a surprising pattern when it repeats itself by at
least n times in the sequence. Then the min_gain can be set
to (—logz p) X n where —log g p is the information of the
pattern.

To facilitate the explanation in the rest of the paper, we
refer to a pattern, say P, as a subpattern of another pattern,
say P', if P can be generated by replacing some event(s) in
P’ by the eternal event *. P’ is called a superpattern of P.
For example, (a2, as,*,*) and (x,as, *, *) are subpatterns of
(a2, as, %, az). The pattern-subpattern relationship essentially
defines a partial order among patterns of the same length.

4. PROJECTION-BASED ALGORITHM

Previous work on pattern discovery usually utilizes the Apri-
ori property that can be stated as “if a pattern P is significant,
then any subpattern of P is also significant”. This property
holds for the support model but is not true in the informa-
tion model. For example, in Figure 2, the information gain
G((as2, *,%,%)) = 0.90 x 3 = 2.70 which is less than the infor-
mation gain of pattern (a2, as, *, *) (i.e., 4.70). If the thresh-
old is set to be 4.5, then (a2, as, *, *) qualifies while (ag, *, *, *)
does not. (Note that ag is an infrequent event which occurs
only three times in the event sequence.) This implies that the
algorithms developed for the support model are not applica-
ble. The pruning power of the support model essentially comes
from the fact that if we know a pattern is not valid, we do not
need to examine its superpatterns. Can we achieve a similar
pruning power under the information model? To answer this
question, we first introduce a concept called eztensible prefiz.

DEFINITION 4.1. For a pattern P = (p1,p2,...,p1), the tu-
ple (p1,p2,...,pi) is called a prefix of P where 1 < i <.

A prefix is part of a pattern. A pattern can be generated by
appending more events to the prefix. For instance, (a1, *, a4) is
a prefix of patterns (a1, *, as,a3) (a1, *, a4,a2), (a1,*,as,a4),
and (a1, *, a4, *), etc.

DEFINITION 4.2. Given an information gain threshold, a pre-
fiz is extensible in a given sequence if at least one pattern
with this prefit is surprising (i.e., whose information gain meets
the threshold), and is inextensible otherwise.

It follows from the definition that, all prefixes of a surprising
pattern are extensible, and any pattern with an inextensible
prefix cannot be a surprising pattern. In order to find all sur-
prising patterns, we only need to examine extensible prefixes.
Fortunately, we have the following theorem.

THEOREM 4.1. (Bounded information gain) Given an
information gain threshold min_gain and a period length 1, a
prefiz P; = (p1,p2, ..., Dpi), 18 not extensible iff Repetition(P;) <
% where mazx_info = I(P;) + E;ZH_I fr is the mawzi-
mum information that can be carried by any pattern with prefic
P; and fr is the highest information that can be carried by any
potential event at the (unspecified) position k of the pattern for
a given sequence.

The proof of this theorem is in [14]. Once a prefix is deemed
to be inextensible, we will immediately eliminate it from any
further examination. Only extensible prefixes will be used to
extend to longer (extensible) prefixes and to construct candi-
date patterns. Furthermore, given a period length I, for any
prefix P; = (p1,p2,...,pi), consider an unspecified position &
where ¢ < k < [. Not every event can potentially serve on po-
sition k of a surprising pattern with prefix P;. An event e € E
can possibly be a candidate for position k only if e recurs on po-
sition k sufficient number of times. In particular, the minimum

required number of repetitions is min_rep = %.
i j=i+17j

This indicates that only a (small) subset of events may serve as
the candidates for each unspecified position and we can limit
our search to these candidate events, and also leads to the
following remark..

REMARK 4.1. (Candidate pruning) For any two prefizes
P = (p1,p2,...,pin) and P2 = (p1,p2,...,pi2) where il <
12, any candidate event e on position k (i2 < k <) for prefix
P;> must also be a candidate on position k for prefiz P;1, where
l is the period length.

The proof of this remark is in [14]. Remark 4.1 states that,
as the prefix grows longer by filling some unspecified posi-
tions, the candidate set of a still open position will only shrink
monotonically. This provides us with the opportunity to mine
surprising patterns by only proceeding with candidate event
for each position. Powered with this pruning technique, we
develop a progressive approach by starting from extensible pre-
fixes that contain only one filled position (the remaining posi-
tions are unspecified) and then proceeding to extensible pre-
fixes with more filled positions gradually to achieve the maxi-
mum pruning effect. A candidate event list for each open (i.e.,
unspecified) position is maintained and continuously pruned
when more positions are filled. This process continues un-
til all surprising patterns have been identified by examining
and extending extensible prefixes. A depth first algorithm is
then developed to generate all qualified patterns in a recursive
manner.

Another observation we made is that a segment shall not
support a pattern P, if it does not support one of P’s prefixes.
To expedite the process, when we examine a prefix), we may
screen out those segments that do not support @ and only
retain the projected subsequence of @ so that the evaluation
of any prefix containing @@ would not have to resort to the
original sequence. Note that the projected subsequence will
also be further pruned every time the algorithm proceeds to

a prefix with more specified positions. For a given period [,
starting with a pattern frame of [slots (without any specific
event assigned), potential patterns (or prefixes of potential
patterns) are generated progressively by every time assigning
a candidate event to a still-open position. Such assignment
may lead to both a refinement of event candidates for the
remaining position(s) by applying the above property and a
further projection of the projected subsequence by specifying
some of the remaining open positions.

The main procedure of mining patterns for a given pattern
period is described in the procedure InfoMiner. InfoMineris a
recursive function. At the kth level of recursion, the patterns
with k£ non-eternal events are examined. For example, all sin-
gular patterns (e.g., (a1, *,*,%)) are examined at the initial
invocation of InfoMiner; at the second level of invocations of
InfoMiner, all candidate patterns with two non-eternal events
(e.g., (a1, *,%,a5)) are evaluated; an so on. This is achieved
by extending the extensible prefixes to include an additional
event during each invocation of InfoMiner and passing the new
prefixes to the next level of recursion. Notice that at most !
levels of recursion may be invoked to mine patterns of period
l.

Being more specific, at each level of the recursion, we eval-
uate patterns with certain prefixes in a projected subsequence
S. Starting from a null prefix and the sequence in Figure 2, the
number of repetitions for each candidate event of each open
position is collected from the projected subsequence S. Then
the bounded information gain property is employed to refine
the candidate list for each remaining open position. Finally,
for each open position 7 and each event e in the refined candi-
date list, a new prefix is created by extending the original one
to include the event e on the ith open position. Note that this
newly created prefix is guaranteed to be extensible and would
have the same number of repetitions as the event e at position

1—i
i. A candidate pattern P = (prefix,*---*) is constructed by
filling all remaining open positions following the prefix with
the eternal event *. We then verify whether P has sufficient
information gain. The projected subsequence on each new
prefix is also generated. The pseudo code of InfoMiner can be
found in [14].

Figure 3(a) shows the projected subsequence of prefix (a1).
Next, we compute the number of repetitions of each event
at every position (Figure 3(b)). Then we refine the set of
candidate events by the minimum repetitions (Figure 3(c)).
The new set of prefixes are generated in Figure 3(d). Finally,
we append eternal event(s) to each new prefix to generate a
set of patterns with ! events. Figure 3(e) shows the set of
patterns that satisfy the minimum information gain threshold.
The InfoMiner algorithm continues until [levels.

5. EXPERIMENTAL RESULTS

We implemented InfoMiner in C programming language on
an IBM RS-6000 (300 MHz CPU) with 128MB running AIX
operating system. To analyze the benefits of the information
model and the performance of the InfoMiner algorithm, we
employ one real trace and four synthetic traces.

5.1 IBM Intranet Trace

The IBM Intranet traces consist of 160 critical nodes, e.g.,
file servers, routers, etc., in the IBM T. J. Watson Intranet.
Each node issues a message in response of certain situation,
e.g., CPU saturation, router interface down, etc. There are

%%%%%%%%%%%@%%%%%%%%%%%%
(a) projected subsequence of prefix (a 1)

(ag,

S N

Event | Repetition | |Event|Repetition| |Event|Repetition
ag 3 a3 2 a 0
ay 1 ay 2 a3 1
3 0 a5 3

(b) repetitions of each candidte in the projected subsequence

} | \)&\‘

Event | Repetition | |Event|Repetition| |Event|Repetition
ag 3 ag 2 as 3

ay 2
(c) refined candidates by bounded information gain property wheremin_rep =2

(a1, * ,ag) (ag, » , » ,as)

(ag, * ,a)

(d) generated new prefixes

(a1,83)

Pattern Information Gain
(ag, as, *, *) 519
(a, =, *.) 6.36

(e) qualified pattern with min_gain = 4.5

Figure 3: Invocation of InfoMiner for Prefix (a1)

total 20 types of messages. We treat a certain message from
a particular node as a distinct event, thus there are total 500
distinct events in the trace because a certain type of node
may only send out 4 or 5 types of messages. The IBM In-
tranet trace consists of 10,000 occurrences of the events. By
applying InfoMiner on this trace, we found some surprising
patterns that are also interesting. For example, the pattern
(nodeq -fail, ¥, nodey _saturated, *) has the eighth highest in-
formation gain. This pattern means that a short time after a
router (node,) fails, the CPU on another node (nodes) is sat-
urated. Under a thorough investigation, we found that nodey
is a file server and after node, fails, all requests to some files
are sent to nodeyp, thus causes the bottleneck. Further experi-
mental results can be found in [14].

5.2 Synthetic Sequences

To analyze the performance of the InfoMineralgorithm, four
sequences are synthetically generated. Each sequence consists
of 1024 distinct events and 20M occurrences of events. The
synthetic sequence is generated as follows. First, at the begin-
ning of the sequence, the period length [of the next pattern
is determined, which is geometrical distributed with mean y;.
The number of events involved in a pattern is randomly chosen
between 1 and . The number of repetitions m of this pattern
is geometrical distributed with mean p,,. The events that
are involved in the pattern are chosen according to a normal
distribution. (This means that some events occurs more fre-
quently than other.) However, the pattern may not perfectly
repeat itself for m times. To simulate the imperfectness of the
subsequence, we employ a parameter § to control the noise. §
is uniformly distributed between 0.5 and 1. With probability
4§, the next [events match the pattern. Otherwise, the next

l events do not support the pattern. The replacement events
are chosen from the event set with the same normal distribu-
tion.This subsequence ends when there are m matches, and a
new subsequence for a new pattern starts. This process re-
peats until it reaches the end of the sequence. Four sequences
are generated based on values of y; and p,, in Table 2.

Table 2: Parameters of Synthetic Data Sets

Data Set i pm | Distinct events | Total Events
13m20 3 20 1024 20M
1100m20 100 20 1024 20M
13m1000 3 | 1000 1024 20M
1100m1000 | 100 | 1000 1024 20M

The main pruning power of the InfoMiner algorithm is pro-
vided by the bounded information gain pruning technique. In
our InfoMiner algorithm, for each prefix, we prune the can-
didate events on each remaining open position. Although the
number of candidate events on each open position can be |E|
theoretically, in practice the average number of candidates in
each open position decreases dramatically with the increase of
the number of specified positions (i.e., the length of the pre-
fix). This is due to the fact that the value of maz_info is esti-
mated from the candidate event with the highest information
on each open position. Thus, with more positions specified,
the maz_info value decreases. In turn, the min_rep threshold
(min_rep = [%1) increases and more candidate events
are pruned. We conduct experiments with our InfoMiner algo-
rithm on the four synthetic sequences. Figure 4(a) shows the
average number of remaining candidate events on each open
position as a function of the number of specified positions (i.e.,
the length of the prefix). The number of candidate events de-
creases dramatically with the number of specified positions.
With data set 13m20 and [3m1000, since the average pattern
length is 3, there is no candidate after 5 or 6 positions are spec-
ified. In addition, with all four data sets, when the number
of specified positions is greater than 3, the average number of
events on each open position is very small (i.e., less than 0.4).
This leads to the overall efficiency of the InfoMiner algorithm.

—- 13m20
-0~ 1100m20 b T100m20
% 13m100 1100m1000

~+_1100m1000 “r [mao

4 _13m1000

Average Num. of Cand. Events on a Open Position
Response Time (sec.)
#

° 5 10 15 20
Number of Specified Positions (a) min_gain ®

Figure 4: Pruning Effects and Response Time

The overall response time of the InfoMiner algorithm largely
depends on the min_gain threshold. We ran several tests
on the above data sets with different min_gain thresholds.
Figure 4(b) shows the response time for each data set. Our
bounded information gain pruning can reduce a large amount
of patterns since more than 99% of the patterns are pruned.
With the increase of the min_gain threshold, the pruning ef-
fects become more dominant because more patterns can be
eliminated by the bounded information gain pruning. Thus,
the response time improves with increasing min_gain thresh-

old on all four data sets. (Note that the Y-axis is in log scale
in Figure 4(a) and (b).) To explore the scalability of the In-
foMiner algorithm, we also experiment with event sequences
of different lengths, from 1 million to 100 million. We found
that the response time of the InfoMiner is linear with respect
to both the length of the event sequence and the period length.

6. CONCLUSION

In this paper, we study the problem of surprising periodic
pattern discovery in a data sequence that consists of events
with vastly different occurrence frequencies. Our goal is not
to find the patterns that occur often, but rather to discover
patterns that are surprising. Instead of using the support met-
ric, we propose a new metric: information gain. Although the
new metric does not possess the Apriori property as the sup-
port metric does, we identify the bounded information gain
property in the information model. Based on the bounded in-
formation gain property, we devise a recursive algorithm for
mining surprising periodic patterns by only exploring extensi-
ble prefixes.

7. REFERENCES

[1] G. Berger and A. Tuzhilin. Discovering unexpected patterns in
temporal data using temporal logic. Temporal Databases -
Research and Practice, Lecture Notes on Computer Sciences,
(1399) 281-309, 1998.

[2] R. Blahut. Principles and Practice of Information Theory,
Addison-Wesley Publishing Company, 1987.

[3] S. Brin, R. Motwani, C. Silverstein. Beyond market baskets:
generalizing association rules to correlations. Proc. ACM
SIGMOD Conf. on Management of Data, 265-276, 1997.

[4] J. Han, G. Dong, and Y. Yin. Efficient mining partial periodic
patterns in time series database. Proc. Int. Conf. on Data
Engineering, 106-115, 1999.

[5] M. Klemetinen, H. Mannila, P. Ronkainen, H. Toivonen, and
A. Verkamo. Finding interesting rules from large sets of
discovered association rules. Proc. CIKM, 1994.

[6] B. Liu, W. Hsu, and Y. Ma. Mining association Rules with
multiple minimum supports. Proc. ACM SIGKDD, 337-341,
1999.

[7] S. Ma and J. Hellerstein. Mining partially periodic event
patterns with unknown periods. Proc. Int. Conf. on Data
Engineering, 205-214, 2001.

[8] H. Mannila, D. Pavlov, and P. Smyth. Prediction with local
patterns using cross-entropy. Proc. ACM SIGKDD, 357-361,
1999.

[9] T. Oates, M. D. Schmill, P. R. Cohen. Efficient mining of
statistical dependencies. Proc. 16th Int. Joint Conf. on
Artificial Intelligence, 794-799, 1999.

[10] B. Padmanabhan and A. Tuzhilin. Small is beautiful:
discovering the minimal set of unexpected patterns. Proc. ACM
KDD, 54-63, 2000.

[11] A. Silberschatz and A. Tuzhilin. What makes patterns
interesting in knowledge discover systems. IEEE Transactions
on Knowledge and Data Engineering (TKDE) vol. 8 no. 6, pp.
970-974, 1996.

[12] K. Wang, Y. He, and J. Han. Mining frequent itemsets using
support constraints. Proc. Int. Conf. on Very Large Data
Bases, 2000.

[13] J. Yang, W. Wang, and P. Yu. Mining asynchronous periodic
patterns in time series data. Proc. ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (SIGKDD), pp.
275-279, 2000.

[14] J. Yang, W. Wang, and P. Yu. InfoMiner: mining surprising
periodic patterns. IBM Research Report, 2001.

[15] M. J. Zaki. Generating non-redundant association rules. Proc.
ACM SIGKDD, 34-43, 2000.

