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Abstract

A meta-rule-guided data mining approach is proposed and
studied which applies meta-rules as a guidance at finding
multiple-level association rules in large relational databases.
A meta-rule is a rule template in the form of “P; A --- A
P, — Q1A+ -AQy7, in which some of the predicates (and/or
their variables) in the antecedent and/or consequent of the
meta-rule could be instantiated. The rule template is used to
describe what forms of rules are expected to be found from
the database, and such a rule template is used as a guidance
or constraint in the data mining process. Note that the pred-
icate variables in a meta-rule can be instantiated against a
database schema, whereas the variables or some high-level
constants inside a predicate can be bound to multiple (but
more specific) levels of concepts in the corresponding con-
ceptual hierarchies. The concrete rules at different concept
levels are discovered by a progressive deepening data mining
technique similar to that developed in our study of mining
multiple-level association rules. Two algorithms are devel-
oped along this line and a performance study is conducted
to compare their relative efficiencies. Our experimental and
performance studies demonstrate that the method is powerful
and efficient in data mining from large databases.

1 Introduction

Database mining, i.e., the discovery of interesting knowl-
edge from large amounts of data stored in databases, is a
highly demanding and promising research topic because
of its strong application potential and the wide availabil-
ity of the huge amounts of data in databases.

Many methods have been proposed and developed in
recent studies on data mining by development and in-
tegration of database, machine learning, and statistics
techniques [9, 3]. However, a frequently encountered
phenomenon in database mining is that although a min-
ing system may discover a quite large number of rules,
many of them could be poorly focused or lack of inter-
est to users. Two major factors may contribute to this
phenomenon: (1) lack of focus on the set of data to be
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studied, and (2) lack of constraints on the forms and/or
kinds of rules or knowledge to be discovered.

The first problem, the lack of focus on the set of data
to be studied, can be handled by introducing a data min-
ing interface which specifies the set of data relevant to
a particular mining task. For example, the DBMiner
(previously DBLearn) system developed in our previous
study [7] uses an SQL-like interface to specify the task-
relevant set of data for a data mining query. Thus, in
order to find the general characteristics of computer sci-
ence graduate students in Canada, a where-clause is used
to retrieve only those students of interest.

However, the second problem, the lack of constraints
on the forms and/or kinds of rules or knowledge to be
discovered, is not so straightforward to solve. There are
many ways to specify the kinds of knowledge or the forms
of rules to be discovered. For example, one may specify
the types of knowledge to be discovered, such as charac-
teristic rules, classification rules, association rules, and
so on [7], or specify the number of disjuncts in a gen-
eralized rule, i.e., the expected (or maximum) number
of distinct values of each generalized attribute or the
number of tuples in the generalized relation [4]. More-
over, one may also specify some syntactic or semantic
constraints on the forms of discovered rules[2, 8].

Recently, Shen et al. [10] proposed an interesting tech-
nique to specify the form of rules to be discovered in
data mining, called metaquery, which presents a de-
sired logical form for the rules to be discovered and
serves as an important interface between human discov-
erers and the discovery system. In their initial study
of metaquery-directed data mining [10], the rules to be
discovered are confined to single concept level, whereas
the knowledge discovery method is confined to Bayesian
Data Cluster linked with a deductive database system
LDL 4+ +. Based on our observation, the scope of
metaquery-directed mining could be substantially ex-
tended if the discovery of rules at multiple concept lev-
els is explored [6]. Moreover, since a metaquery and its
instantiated rules are in the form of association rules,
the performance could be substantially enhanced if the
database-oriented association rule mining algorithms [2]
are adopted in the data mining process.



In this study, issues for meta-rule guided mining of
multiple-level association rules are studied and a set
of efficient mining algorithms are developed and tested.
The study shows that the integration of meta-rule guided
knowledge mining with the mining of multiple-level asso-
ciation rules enhances both the power and performance
of a data mining system and thus is an interesting direc-
tion to pursue.

The remaining of the paper is organized as follows. In
Section 2, preliminary concepts about meta-rule guided
mining of multiple-level association rules are introduced,
starting with some motivating examples. In Section
3, methods for mining meta-rule-guided single-variable
rules are studied. In Section 4, methods for mining
meta-rule-guided multiple-variable rules are examined.
Variation of methods and other relevant issues on meta-
rule-guided data mining are discussed in Section 5, and
the study is concluded in Section 6.

2 Preliminary Concepts

To simplify our discussion, a relational model is adopted
in our study, however, the methods developed here can
be applied with some modifications to other data models,
including extended-relational and object-oriented ones.

For effective data mining, a particular user is usually
interested in only a subset of the data stored in a large
database. An SQL-like data mining query[7] submitted
to a data mining system should be first transformed into
two portions: a data collection portion and a knowledge
discovery portion. The former is essentially an SQL-
query which will be executed against the database to
collect the interested set of data. The latter, i.e., the
knowledge discovery portion, will be examined in detail.

Example 2.1 Suppose that a portion of the relational
schema of a university database is presented as follows.

student(name, sno, status, major, gpa, birth_date,
birth_place, address)

course(cno, title, dept)

grading(sno, cno, instructor, semester, grade)

Let a data mining query (¢1) be presented as follows,
which is to find the relationships between the attributes
status, gpa, birth_place, and address, in relevance to ma-
jor, for the students born in Canada.

(g1) :discover rules in the form of
major(s : student, z) A Q(s,y) — R(s, z)
from student
where birth_place = “Canada”
in relevance to major, gpa, status, birth_place, address

The meta-rule of (q1), “major(s : student,z) A
Q(s,y) — R(s,2)”, specifies the form of the rules to be

discovered, that is, each rule to be discovered is a logic
rule containing two binary predicates, major(s,z) and
Q(s,y), serving as the antecedent and one binary pred-
icate, R(s,z), as the consequent, with all the predicates
sharing the first variable s which is the key of the rela-
tion student. () and R are two predicate variables which
can be instantiated by a list of relevant attributes: gpa,
status, birth_place, and address.

By data mining techniques, the following rules may
be discovered from the database.

magjor(s, “Science” ) A gpa(s, “Excellent”) —

status(s, “Graduate”) (60%) (2.1)
magjor(s,*) Abirth_place(s, “B.C.”) —
address(s, “Burnaby”) (55%) (2.2)

Rule (2.1) indicates that 60% of the students majoring in
science and having excellent gpa are graduate students
and rule (2.2) indicates that 55% of the students major-
ing in anything and born in B.C. are living in the city of
Burnaby.

The rules expressed by even lower level concepts,
such as rules (2.3) to (2.4), can be further discovered
if multiple-level information can be mined from the
database. The semantic meaning of these rules is self-
explanatory.

major(s, “Physics”) A gpa(s, “3.84.0") —

status(s, “M.Sc”) (76%) (2.3)
magjor(s, “CS”) A birth_place(s, “B.C.”) —
address(s, “Burnaby”) (85%) (2.4)

Moreover, the associations among several relations
can be discovered by joining these relations together.
The relational joins can be explicitly expressed in the
meta-rules as presented in the following data mining

query (g¢2).

(g2) :

discover rules in the form of

major(s,z) A P(c,y) — Q(s:S,¢c:C,z).
from student S, grading G, course C
where S.birth_place = “Foreign”

The query is to find the relationships among three pred-
icates, one of which is instantiated to major(s,z), the
second contains the key of the course relation, and the
third one, the consequent predicate, contains two key
components from two relations: student and course, for
the relevant set of the data: the students born in foreign
countries.

By mining rules from multiple concept levels, the fol-
lowing rules may be discovered from the database.
magjor(s, “Science” ) A dept(c, “CS”) —

grade(s,c, “Good”) (60%) (2.5)



magjor(s, “Math”) A cno(c, “C'S_400level” ) —
grade(s,c, “A—") (42%) (2.6)

In Example 2.1, both the data mining queries and the
discovered rules contain concepts at nonprimitive levels,
i.e., levels higher than those stored in databases, such as
“Science”, “Graduate”, “Excellent”, etc. The high level
concepts appearing in the query help the collection of
the relevant set of data, whereas the concepts organized
at different levels help progressively deeping the data
mining process by first browsing the high-level data and
then mining detailed regularities at low levels.

In this study, we assume that multiple levels of con-
cepts are organized in the form of concept hierarchies
which are provided in the system for mining rules at
multiple concept levels, however, the concept hierarchies
can also be dynamically adjusted and/or automatically
generated for flexible data mining [5].

To confine our study, we assume the rules to be discov-
ered are conjunctive rules, i.e., a set of conjuncts in both
the rule head and body. Moreover, the predicate vari-
able in the meta-rules can only be instantiated against
database schema (attributes). Furthermore, each predi-
cate variable in a meta-rule is different from others and
is instantiated to a distinct and different predicate name.
Some relaxations of these restrictions will be discussed
in Section 5.

As a notational convention, a predicate name start-
ing with an upper-case letter represents a predicate vari-
able. It can be instantiated by binding it to a concrete
attribute name (which starts with a lower-case letter) in
the schema. For example, a predicate variable P(z,y)
can be instantiated to status(z, “Graduate”) in Exam-
ple 2.1.

Definition 2.1 A meta-rule is a rule template in the
form of

PIANPs - APy, — Q1 ANQa N -ANQy. (27)

where P; (fori=1,...,m)and Q; (for j =1,...,n) are
either instantiated predicates or predicate variables.

The rule “major(s,z) A P(c,y) — Q(s : S,c: C,z)” in
Example 2.1 is a meta-rule.

Definition 2.2 A rule, R., complies with a meta-rule,
Ry, if and only if it can be unified with Rys.

For example, rule (2.5) complies with the meta-rule
“major(s,z) A P(c,y) — Q(s : S,c: C,z)” in Example
2.1.

Definition 2.3 A pattern, p, is one predicate p; or a set
of conjunctive predicate p; A --- A p;, where p;, ..., p;
are predicates instantiated against the database schema.

The support of a pattern p in a set S, o(p/S), is the
number of the tuples in S which contain p versus the
total number of tuples in S. The confidence of p — ¢ in
S, o(p — q/95), is the ratio of o(p A ¢/S) versus o(p/S5),
i.e., the probability that pattern ¢ also occurs in S when
pattern p occurs in S.

To find relatively frequently occurring patterns and
reasonably strong rule implications, a user or an ex-
pert may specify two thresholds: minimum support, o',
and minimum confidence, ¢'. Notice that for finding
multiple-level association rules, different minimum sup-
port and/or minimum confidence can be specified at dif-
ferent levels.

Definition 2.4 A pattern p is large in set S at level [ if
the support of p is no less than its corresponding min-
imum support threshold oj. The confidence of a rule
“p — q/S” is high at level [ if its confidence is no less
than its corresponding minimum confidence threshold

@l

Definition 2.5 A rule “p — ¢/S” is strong if, for a set
S, each ancestor (i.e., the corresponding high level pred-
icate) of every predicate in p and ¢, if any, is large at
its corresponding level, “pA ¢/S” is large (at the current
level), and the confidence of “p — ¢/S” is high (at the
current level).

The definition indicates that if “p — ¢/S” is strong,
then (1) o(p A q/S) > o', (and thus, o(p/S) > ¢', and
o(q/S) > o'), and (2) o(p — ¢/S) > ¢, at its cor-
responding level. It also represents a filtering process
which confines the patterns to be examined at lower lev-
els to be only those with large supports at their corre-
sponding high levels (and thus avoids the generation of
many meaningless combinations formed by the descen-
dants of the small patterns). For example, in a data set
related to major(s,y), if “(y =) science” is a large pat-
tern, its lower level patterns such as “physics” will be
examined; whereas if “art” is small, its descendants such
as “performance art” will not be examined further.

Based on the two mining queries presented in Exam-
ple 2.1, meta-rule guided mining of multiple-level asso-
ciation rules can be classified into two categories: (1)
mining single-variable association rules, and (2) min-
ing multiple-variable association rules. The former dis-
covers association rules in the form like (2.3), in which
each predicate contains only one and the same variable;
whereas the latter discovers rules in the form like (2.5),
in which some predicate(s) may contain more than one
variable, which may often involve join(s) of more than
one relation.



3 Meta-rule-guided mining of single-
variable rules

In this section, we examine the methods for meta-rule
guided mining of single-variable association rules. A
single-variable association rule represents an association
relationship among a set of properties in a data relation
at different concept levels.

Definition 3.1 A single-variable meta-rule is in the form

of

Pi(t:rel,z1) A A Pp(t,zm) —
Qut,y1) A= AQn(t, zn) (3.1)

where P; (fori=1,...,n)and @; (for j =1,...,m) are
either instantiated predicates or predicate variables, and
the common variable ¢ represents the key of a relation
rel. ad

By data mining, each predicate variable in a discov-
ered rule will be instantiated to a concrete predicate
name which is an attribute name of the relation rel, the
common variable ¢ will remain to be a variable which is
an abstraction of the key or key component of the rela-
tion, and other variables in the predicates will be instan-
tiated to the high-level or primitive level constants (i.e.,
properties) of the corresponding predicates (attributes).

For example, the meta-rule “major(s : student,z) A
Q(s,y) — R(s,z)” in (¢1) of Example 2.1 is a single-
variable meta-rule, and the discovered rule (2.1) indi-
cates that the common variable s remains to be a vari-
able which is an abstraction of the key of the relation
student, and other variables in the predicates are instan-
tiated to constants, such as Science, Ezcellent, and Grad-
uate in the corresponding predicates, such as major, gpa,
and status, respectively.

For efficient mining of multiple-level single-variable
association rules, two techniques: a large-predicate grow-
ing technique and a p-predicate testing technique, are pro-
posed and examined in the next two subsections.

3.1 A large-predicate growing technique

Following our previous study on mining multiple-level
association rules [6], a large-predicate growing technique
is proposed as follows.

First, the set of relevant data is collected into an ini-
tial data relation by executing an SQL query specified
by the data mining query. Second, large 1-predicate-
sets, L[1,1], £[2,1], ..., L[maz_l, 1], are derived at each
concept level (from the top-most desired concept level,
level 1 down to level max 1) by scanning the initial data
relation once, where level max_l is the lowest level where
a non-empty large 1-predicate-set can be derived. Third,
large 2-predicate-sets are derived at each concept level

by first generating the candidate large 2-predicate-sets
and then scanning the initial data relation to compute
the large 2-predicate-sets. Fourth, this process contin-
ues until the large p-predicate-sets are derived at each
concept level, where p is the total number of predicates
in the meta-rule, i.e., p = m + n in rule (3.1). Finally,
the rules in the form of meta-rules are generated from
the large p-predicate-sets at each concept level based on
the specified confidence threshold at this level.

This technique is illustrated in the following example.

Example 3.1 We examine how to derive the multiple-
level strong association rules for query (¢1) of Exam-
ple 2.1.

1. The initial data relation Ry (a fragment shown in
Table 1) is derived by performing selection to collect
the students who were born in Canada and then
projection on the set of relevant attributes: major,
gpa, status, birth_place, and address.

major | gpa | status | birth_place address
Vancouver, 3,23 BCM_

CS 3.85 | Senior | B.C., IE’ Bugl—
a y’ . b

Canada Canada

Table 1: A fragment of student relation in relevance to
the data mining task

2. Large 1-predicate-set tables at multiple concept lev-
els, (as shown in Table 2), i.e., £[1,1], £[2,1], ...,
L[maz_l, 1], are derived by scanning the initial data
relation Rq once.

£[1,1] £[2,1] £[3,1]
major count major count major | count
Science 4,850 Appl._Sci. | 1,364 CS 675
gpa count gpa count gpa count
Excellent 2,173 3.8.4.0 1,731 3.8.3.9 | 1,043
status count status count status | count
Underg. 20,204 Senior 4,204 Senior | 4,204

Table 2: A fragment of large 1-predicate tables at differ-
ent concept levels

3. Large 2-predicate-sets at multiple concept levels
(as shown in Table 3), ie., £[1,2], £[2,2], ...,
L[maz_l, 2], are derived by first generating the can-
didate large 2-predicate-sets and then scanning Rg
to compute the large 2-predicate-sets.



£[1,2]

major gpa count
Science | Excellent 819
major status count
Science | Underg. 6,914
L[2,2] L[3,2]
major gpa count major gpa count
Appl. Sci. | 3.8.4.0 | 327 CS [3839 | 174
major status | count major | status | count
Appl._Sci. | Senior | 2,149 CS Senior 891

Table 3: A fragment of large 2-predicate tables at differ-
ent concept levels

4. This process continues until the large p-predicate-
sets at multiple concept levels, i.e., L[1,p], L]2,p],
..., L[maz_l, p], where p is the total number of pred-
icates in the meta-rule, are derived. The tables so
derived for the large 3-predicate sets are presented
in Table 4.

£[1,3]
major gpa status count
Science | Excellent | Underg. 526
£[2,3]
major gpa status count
Appl. Sci. | 3.8.4.0 | Senior 274
£[3,3]
major gpa status count
CS 3.8.3.9 | Senior 180

Table 4: A fragment of large 3-predicate tables at differ-
ent concept levels

Rule Support | Confidence

major(s, “Science” )A
birth_place(s, “Western_Canada”) 25% 95%
— address(s, “B.C.”)

major(s, “CS”)A
gpa(s, “3.8_3.97) 5%
— status(s, “Senior”)

25.6%

Table 5: Rules generated from the large 3-predicate ta-
bles at different concept levels

5. The rules in the form of meta-rules are generated
in Table 5 from the large 3-predicate-sets at multi-
ple concept levels, based on the specified confidence
threshold at each level. ad

The above example leads to the following algorithm
for mining meta-rule guided single-variable strong ML-
association rules using large predicate growing tech-
nique.

Algorithm 3.1 (large predicate-growing)
Meta-rule guided mining of single-variable strong ML-
association rules using large predicate growing technique.

Input: (1) DB, a relational database, (2) H, a con-
cept hierarchy, (3) minsupl[l], the minimum support
threshold, and mincon f[l], the minimum confidence
threshold, for each concept level [, and (4) meta_R,
the meta-rule in the form of (3.1).

Output: Multiple-level strong association rules in the
form of (3.1) discovered in relational database DB.

Method: A top-down, progressively deepening process
which collects large predicate sets at different con-
cept levels as follows.

1. The initial data relation R is derived by executing
an SQL query specified by the data mining query.

2. Large l-predicate-set tables at each concept level,
ie., L[1,1], £[2,1], ..., L[maz_l, 1], are derived by
scanning the initial data relation Ry once. Note
that a predicate p;(¢, ¢;) is large at level { (and thus
being included in £[{, 1]) if (1) its support is low less
than than minsup[l], and its corresponding concept
¢; at a higher-level I — 1 is large.

3. Derive the large k-predicate-set tables at each con-
cept level and for each k from 2 to p, i.e., derive
L[Lk], forl=1,...,mazl, and k = 2,... p, where

p is the total number of predicates in the meta-rule.

Note that a set of k predicates is large at level [ if
(1) each of its k subsets of (k—1) predicates is large
at level [, and (2) the support of the k predicates at
level 1 is no less than minsupll].

4. For each concept level [, generate the rules in the
form of meta-rules from the large p-predicate set
tables L[{, p] if the confidence of the rule is no less
than minconf[l], the specified confidence threshold
at this level. a

3.2 A direct p-predicate testing technique

The previous algorithm is a natural extension of the
method developed in the study of mining multiple-level
association rules [6]. A major difference of the require-
ments in meta-rule guided mining from that in the min-
ing of general multiple-level association rules is that p,
the number of large predicates in the rules to be gener-
ated, is predefined by the given meta-rule. This heuristic



can be used in the development of the variations of the
rule mining algorithms.

Here we consider one variation of the mining tech-
nique: a direct p-predicate generation and testing tech-
nique. At the third step of Algorithm 3.1, instead of
deriving large 2-predicate-sets at each concept level, and
then large 3-predicates, etc., p-predicate sets are gener-
ated directly from the large 1-predicate sets and tested
against the support threshold at each level. This tech-
nique is illustrated in the following similar example,
followed by the algorithm for mining meta-rule guided
single-variable strong ML-association rules using the p-
predicate testing technique.

Example 3.2 We examine the derivation of the
multiple-level strong association rules for query (q1) of
Example 2.1.

1. The same as Step 1 and Step 2 of Example 3.1.

2. Large p-predicate-sets at multiple concept levels,
ie., L[L,p], L[2,p], ..., L[maz.l p], are derived
based on the large 1-predicate sets derived at pre-
vious step. This skips the generation of the large 2-
predicate tables of Example 3.1 and generates only
the large 3-predicate tables as Table 4.

3. The rules in the form of meta-rules are generated
from the large p-predicate-sets at each concept level
based on the specified confidence threshold at this
level. This generates the same rule table as Table
3. 0

Algorithm 3.2 (Direct p-predicate testing)
Meta-rule guided mining of single-variable strong ML-
association rules using the direct p-predicate derivation
technique.

Input: The same as Algorithm 3.1.
Output: The same as Algorithm 3.1.

Method: A top-down, progressively deepening process
which collects large p predicate sets at multiple con-
cept levels as follows.

1. The same as Step 1 and 2 of Algorithm 3.1.

2. Derive the large p-predicate-set tables at each con-
cept level from level 1 to maz_l, i.e., derive L[I, p],
forl =1,..., max_l, where p is the total number of
predicates in the meta-rule.

Note that a set of p predicates is large at level [ if (1)
each of its component 1-predicates is large at level
{, and (2) the support of the p predicates at level {
is no less than minsup[l].

Scale-Up
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Figure 1: Scale up of the Algorithms
3. For each concept level [, generate the rules in the
form of meta-rules from the large p-predicate set
tables L[l p] if the confidence of the rule is no less
than minconf[l], the specified confidence threshold
at this level. a

3.3 A performance comparison of the two algo-
rithms

We implemented the two algorithms on a SUN SparcSta-
tion5 with 32MB main memory. A synthetical database
is used to test the algorithms. The database has five
attributes each of which has 100 values at the prim-
itive level. The values are organized into a concept
hierarchy with four levels. The numbers of higher
level(nonprimitive) nodes in the hierarchy are 1, 5 and
20 at level 1, 2, 3 respectively. Since there are only one
node at the level 1, it is treated as virtual level and does
not join the computation. The meta-rule we used has
the form: A(¢,z) A B(t,y) — C(¢, z). The minimal con-
fidences are 50% at all levels.

First, we test the scale-up properties of the two al-
gorithms. They are tested on the database with the
number of tuples from 10,000 to 100,000. The minimal
supports are (4%, 1%, 0.2%) at the level 2, 3 and 4. The
performance data are shown in Figure 1. As we can see,
both algorithms scale up well. Algorithm 3.1 has bet-
ter scale-up behavior since the overhead of computing
L[l, k] for small k£ weights less and less as the database
size grows.

We then compare the performance of the algorithms
under different minimal supports. Figure 2 shows the
execution times of both algorithms with different mini-
mal supports. The database size is fixed at 10,000 tu-
ples. The minimal supports used are: T1(6%, 1%, 0.5%),
T2(4%, 1%, 0.1%), T3(4%, 0.5%, 0.1%), T4(2%, 0.5%,
0.1%), and T5(2%, 0.5%, 0.05%). When the minimal
supports decrease, the execution times increase since the
filter is weaker. We find that Algorithm 3.1 is sensitive
to the minimal supports since it uses them to cut small
patterns at each iteration. On the other hand, Algo-
rithm 3.2 is not so sensitive to the change. Algorithm
3.1 outperforms Algorithm 3.2 when the minimal sup-
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ports are large(so the filter is strong) while Algorithm
3.2 outperforms Algorithm 3.1 when the filter is not so
strong. Generally, we feel Algorithm 3.1 should be tried
for most reasonable support thresholds. Algorithm 3.2
is a good candidate when lots of details are interested.

4 Meta-rule guided mining of multiple-
variable rules

Now we examine the meta-rule guided mining of
multiple-variable rules. Since a multiple-variable associ-
ation rule presents relationships among several relations,
a join of these relations should be performed in the data
collection step based on the join relationship explicitly
expressed in the meta-rules.

Taking query (¢2) in Example 2.1 as an example, we
analyze the data mining process as follows.

Example 4.1 The meta-rule presented in query (gz)
of Example 2.1 contains three predicates: major(s, z),
P(c,y), and Q(s,c,z). The first predicate is from the
attribute major of the relation student, the second 1is
a property in relevance to the relation course because
it contains one variable from course, and the third is
a property in relevance to the relation grading since it
contains two variables, each from student and course,
respectively.

The data mining process is to discover the relation-
ships in relevance to three relations: student, course, and
grading. 1t is necessary to perform a join of the three re-
lations. Since only one predicate major(s, ) is from the
relation student, only the attribute major in the relation
student is retained in the joined relation. Therefore, the
joined relation should have the following schema.

s_c_g (sno, major, cno, title, dept, instructor,
semester, grade)

The possible instantiations of the two candidate pred-
icates P and @ should be: P € {title,dept}, and
Q € {instructor, semester, grade}. Moreover, since ti-
tle is unique in the relation course, which is similar to

the behavior of the key cno, the predicate P in the
meta-rule can only be instantiated to dept. Therefore,
the data mining process is essentially to find multiple-
level association rules in relevance to the following three
properties: (1) magjor(s,z), (2) dept(c,y), and (3) one
of the following three predicates: instructor(s,c,z),
semester(s,c, z), grade(s, ¢, z).

Except for the restriction on the instantiation of pred-
icate variables, the data mining method are like that of
mining single-variable association rules. a

5 Discussion

This section discusses some closely-related issues on
meta-rule guided mining of multiple-level association
rules, including meta-rule-guided mining of mixed-level
rules and variations of constraints on the forms of meta-
rules.

5.1 Meta-rule-guided mining of mixed-level
rules

In the method developed in the last section, it is as-
sumed that the concepts of the predicates in the discov-
ered rules are lined up among different predicates ac-
cording to the levels of their concept hierarchies. For
example, major “Science” is lined up with gpa “Excel-
lent” and birth_place “Western Canada”, whereas major
“CS” is lined up with gpa “3.8.3.9” and birth_place “N.
Burnaby”, etc. However, it may not be the case in prac-
tical applications. It could be desirable to line up ma-
jor “CS” with gpa “Excellent” and birth_place “British
Columbia”, etc. That is, it is often necessary to link
concepts among different predicates at multiple levels of
hierarchies for effective knowledge mining.

Interestingly, the method studied in the last two sec-
tions can be modified minorly to accommodate this flex-
ible data mining requirement. For example, Algorithm
3.1 can be modified as the following for mining rules
across multiple concept levels. At the third step, the
candidate large 2-predicate-sets will enclose the pairs of
two large 1-predicate-sets at any concept levels instead
of pairing only those at the same concept levels.

5.2 Variations of constraints on the forms of
meta-rules

In our previous discussion, there has been another con-
straint on the possible forms of meta-rules: there are no
repetitive predicate variables in the meta-rule, and all
the predicates in an instantiated rule will be different.

Although this restriction may cover a large number
of applications, there are applications which would like
to study the association relationships involving the same
predicates. For example, one may like to find the gen-



eral association relationships among the courses taken
by the same student. Such a query could be presented
and examined in the following example.

Example 5.1 In the university database of Example
2.1, one may like to find the association relationships
among the courses taken by the same student. The query
can be presented as follows.

(g4) :discover rules in the form of
P(s:S,¢c1:C,z1) A P(s,c2: Cyz2) — P(s,cs:
from student S, grading G, course C

C,Zg)

The system may find some meaningful rules like the
following.

grade(s, “CM PT100”, “Ezcellent”)A
grade(s, “MATH100”, “Exzcellent”)
— grade(s, “CM PT300”, “A”)  (82%)

Note in this case the data mining process can be
viewed as a similar process of mining association rules
in transaction databases [1]. This is because the rela-
tional table can be compressed into a table consisting
of two fields: (1) a set of distinct students, each cor-
responding to a transaction identifier in a transaction
database, and (2) a set of corresponding grading records
associated with each student, each corresponding a set
of data items processed by that transaction. Thus the
transaction-based data mining algorithms developed in
previous studies [2, 6] can be applied in the efficient pro-
cessing of association relationships. However, the previ-
ously developed transaction-based association rule min-
ing algorithms still need to be modified to accommodate
more complicated queries.

6 Conclusions

We studied the meta-rule guided mining of multiple-level
association rules in large relational databases. Meta-rule
guided mining of multiple-level association rules provides
syntactic constraints on the desired rule forms to be dis-
covered, which leads to the constrained and progressive
mining of refined knowledge from data and thus has in-
teresting applications for knowledge discovery in large
databases.

A top-down progressive deepening data mining tech-
nique is developed for rule-guided mining of multiple-
level association rules, which extends the mining of
multiple-level association rules mining algorithms to
rule-guided mining of association rules. Two algorithms,
, have been proposed and tested against synthesized
databases, and their performance study shows that dif-
ferent algorithms may have the best performance for dif-
ferent distributions of data.

Related issues, including concept hierarchy handling,
methods for mining flexible multiple-level association
rules, and adaptation to difference mining requests are
also discussed in the paper. Our study shows that meta-
rule guided mining of multiple-level association rules
from databases has wide applications and efficient al-
gorithms can be developed for discovery of interesting
and strong such rules in large databases.

Integration of rule-guided mining and the mining of
multiple-level knowledge rules poses many issues for fur-
ther investigation. For example, meta-rule guided min-
ing of multiple-level sequential patterns, the patterns
containing aggregation functions, etc. are interesting
topics for future study.
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