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Abstract

Feature analysis and feature selection are fundamental pursuits in pattern recognition. We revisit and generalize an
issue of feature selection by introducing a mechanism of soft (fuzzy) feature selection. The underlying idea is to consider
features to be granular rather than numeric. By varying the level of granularity, we modify the level of contribution of
the speci/c feature to the overall feature space. We admit an interval model of the features meaning that their values
assume a form of numeric intervals. The intervalization of the features exhibits a clear-cut interpretation. Moreover a
contribution of the features to the formation of the feature space can be easily controlled: the broader the interval, the
less essential contribution of the feature to the entire feature space. In limit, when the intervals get broad enough, one
may view the feature to be completely eliminated (dropped) from the feature space. The quanti/cation of the features in
terms of their importance is realized in the setting of the clustering FCM model (namely, a process of the binary or fuzzy
feature selection is carried out and numerically quanti/ed in the space of membership values generated by fuzzy clusters).
As the focal point of this study concerns an interval-like form of information granules, we reveal how such feature
intervalization helps approximate fuzzy sets described by any type of membership function. Detailed computations give
rise to a detailed quanti/cation of such granular features. Numerical experiments provide a comprehensive numerical
illustration of the problem. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Feature space; Clustering; Information granularity and information granules; Set approximation of fuzzy sets; Pattern
recognition

1. Introduction: fuzzy sets in feature formation and
feature selection

Since the very inception of fuzzy sets, their role in
pattern recognition has been advocated quite vigorously,
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cf. Refs. [1–5]. This role has been manifested at the
conceptual level as well as materialized in a vast number
of speci/c algorithms of unsupervised and supervised
learning [3,15]. There are numerous and comprehensive
development environments of fuzzy classi/ers. Features
and their ensembles forming a feature space become a
core of any endeavor of pattern recognition. Fuzzy sets,
by their nature, seem to exhibit a primordial impact on
the design of pattern classi/ers, not only those constructs
being fully embedded in the framework of the fuzzy set
technology. As commonly envisioned, fuzzy sets are
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perceived as linguistic granules that spread over the
domains of the variables (features) encountered in the
problem at hand. The respective membership func-
tions are formed in order to focus attention on some
regions of the universe of discourse that are perceived
of importance to the classi/cation task. In other words,
they may eventually facilitate the learning and result
in a better performance of the constructed classi/er.
Computationally, fuzzy sets introduce nonlinearity to
the classi/cation problem by nonlinearly transform-
ing (normalizing) the original space. In other words,
instead of the original space X (that may eventually
call for further normalization), we develop nonlinear
terms (fuzzy sets), say A; B; C de/ned in X . The en-
suing classi/er “perceives” the environment through
these fuzzy set constraints (namely, each pattern man-
ifests through the respective membership grades of
A(x); B(x); and C(x), respectively). This form of the
nonlinear transformation has a lot in common with
receptive /elds used in radial basis function neural net-
works. In this role, fuzzy sets form a preprocessing
module that is followed by the computationally intensive
architecture (viz. a multilayer neural network, inference
scheme of approximate reasoning and others). Even in
this simple example it becomes apparent that by intro-
ducing fuzzy sets we tend to increase the dimensionality
of the classi/cation problem. More speci/cally, one vari-
able (feature) has been expanded to three features (that
is A; B, and C). The dimensionality expansion may not
be acceptable, in particular if we admit a larger number
of the linguistic terms for each original variable. The
increase is still linear, that is the number of new features
is n′ where n′=p∗n, with “p” being the number of the
linguistic terms—fuzzy sets (assuming that we use the
same number of the linguistic terms for each variable).
Our expectations are that the increase of dimension-
ality is compensated by some tangible advantages at
the learning side and the overall performance of the
classi/er.
Fuzzy clustering, especially FCM, has occupied a

dominant role as an eJcient vehicle of information
granulation (that is building fuzzy sets) [1,3,6]. FCM
helps combat the curse of dimensionality in the classi-
/cation problem by developing fuzzy relations rather
than fuzzy sets. This is obvious that as all variables
are involved in the clustering process at once, the
number of new features is equal to the number of the
clusters being generated (say, c). Obviously, as “c”
is independent from the dimensionality of the origi-
nal space (“n”), thus we may encounter also an eKect
of dimensionality reduction. This type of feature for-
mation exhibits two important aspects that are worth
underlining:

• /rst, the linguistic granules are developed (at least to
signi/cant extent) based upon the available patterns

(data) so the statistical characteristics of the experi-
mental data can be properly captured.

• second, all original variables are taken into account
at the same time—the resulting constructs are fuzzy
relations rather than fuzzy sets. This helps us take into
consideration interrelationships occurring within the
patterns.

Feature selection has been a cornerstone of pattern
recognition, see Refs. [7–9]. We can envision a lot of
fundamental results arising in the realm of statistical
classi/cation techniques. The reduction of the feature
space, viz. an elimination of features that tend to be
less “informative” (that is less discriminative) and the
ensuing determination of the best subset of features is
a computationally intensive problem. The enumeration,
brute-force approach will not work in the case of classi-
/cation problems of higher dimensionality. The proper
performance index guiding this selection is another
problem to deal with. Various techniques were studied
including those con/ned to neurocomputing , cf. Refs.
[10,11] and exploiting discrete optimization techniques,
see e.g., Refs. [12,13]. Interestingly enough, not so much
can be found as far as feature selection is concerned
in the setting of fuzzy pattern recognition; one can re-
fer to Refs. [3,6,14,15] that tackle this matter to some
extent.
The objectives of this study are threefold:

• First, to formulate a problem of feature selection both
in its binary (two-valued) and soft (fuzzy) version.
Both versions are embedded in a cluster-driven envi-
ronment.

• Second, to show how feature intervalization gives rise
to the fuzzy version of the problem of feature selection.
Our conjecture is that feature granulation is closely
tied with the issue of partial elimination of variables
(features).

• Third, to quantify an eKect of feature granulation
(intervalization) in terms of feature selection. In par-
ticular, we are interested in studying a correlation
between binary and fuzzy feature selection and its
ensuing quanti/cation governed by the granularity of
the features.

Following the identi/ed thrust of the study, the paper
is organized in the following manner. In Section 2, we
formulate the problem in the space of membership val-
ues (that is the space being generated through fuzzy
clustering). Section 3 concentrates on soft (fuzzy) fea-
ture selection and elaborates on the pertinent computa-
tional details. In particular, set-based approximation of
fuzzy sets is discussed. Numerical studies are included in
Section 4.
From now on, we con/ne ourselves to the following

notation. The set of patterns to be clustered is located
in the n-dimensional space of reals, X = {x1;x2; : : : ;xN}
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where xk ∈Rn. The number of clusters is equal to “c”.
The distance function ||:|| used here is a weighted Eu-
clidean distance where each coordinate (feature) of the
pattern is normalized by its standard deviation, namely

||a − b||=
n∑
i=1

(ai − bi)2

�2i
:

Both a and b are the vectors (patterns) in Rn. Here �i is
a standard deviation of the ith feature. This type of the
weighted distance implies that all features exhibit a sim-
ilar impact when expressing similarity between the pat-
terns. The key outcomes of the clustering arise in the form
of the prototypes (centroids) of the clusters v1; v2; : : : ; vc
(essentially given the prototypes, we can easily “recon-
struct” all membership values contained in the partition
matrix).
Furthermore, a standard FCM algorithm will be used

throughout the study; the algorithmic details are not re-
ported here as those are widely available in the existing
literature, see e.g., Ref. [3], the classic reference in this
area.

2. Feature selection in the space of membership
values: a selection criterion

Membership functions of the fuzzy clusters (fuzzy re-
lations) reNect the very nature of the original feature
space. In other words, our conjecture is that when we
traverse the original feature space X (that is, as men-
tioned, an n-dimensional Euclidean space of reals, Rn),
this movement becomes fully reNected in the correspond-
ing move occurring in the unit hypercube of the mem-
bership grades, that is [0; 1]c. The classi/cation regions
of any classi/er are also formed based on the mem-
bership values. We may expect that an elimination of
some coordinates of Rn (thus a reduction of the origi-
nal feature space), will become fully reNected in the de-
parture from the original membership values. Denote by
I the set of indices (numbers of features) contained in
N = {1; 2; : : : ; n} that is

I = {i1; i2; : : : ; im}

We use the notation I ⊂ N to summarize a certain subset
of the overall feature set

j∈ I
def︷︸︸︷
= feature “j” is included in subset I :

Subsequently denote by u(xk) a c-dimensional vector of
the membership grades produced by the clustering algo-
rithm. Similarly, by u(xk ; I) we express a c-dimensional
vector of membership grades computed for the features

contributing to I . More speci/cally, we have

ui(xk ; I)=
1∑c

j=1(||xk − vi||I =||xk − vj||I )2=p−1

with p¿ 1. Moreover ||:||I denotes the distance func-
tion restricted to the features in I and computed as
follows:

||a− b||I =
∑
l∈I

(al − bl)2

�2l
:

Let us recall that the original membership grades are
calculated based on the well-known expression [3]

ui(xk)=
1∑c

j=1(||xk − vi||=||xk − vj||)2=p−1

(to maintain uniformity, we could have alternatively
used the distance notation of the form ||:||N for all
the features exploited in the respective membership
computations).
Now any combination of the features I can be eval-

uated by expressing how far u(xk ; I) diKers from the
original u(xk). Again, a simple Euclidean distance could
be used here. A sum of these distances over all patterns
gives rise to the expression

Q(I)=
N∑
k=1

c∑
i=1

(ui(xk ; I)− ui(xk))
2:

The higher the value of this performance index, the more
essential is the combination of the features removed from
N that is the features contained in N \ I . Obviously,
Q(N) is a boundary condition stating that no features
have been eliminated; hence Q(N) yields a zero value.
In general, there is no monotonicity condition satis/ed
namely the statement

if I ⊂ I ′ then Q(I)¿Q(I ′)

may not hold in general. This observation does not seem
to be very surprising: we may anticipate that an opti-
mal subset of features may not be the largest one that is
left.

3. Uncertainty in feature description and soft feature
selection

The feature selection procedure we have discussed so
far is a standard one: a certain feature is either in (be-
comes an element of I) or out (that is included in N \I).
That is we are concerned with a Boolean (two-valued)
feature selection. An interesting generalization of this
version of the selection problem can be referred to as a
soft (fuzzy) feature selection. The idea is not to drop a
given feature but to granulate it, viz. admit its nonnu-
meric values, especially intervals. This intervalization of
the feature will give rise to a soft character of feature
selection. Intuitively, when the interval describing the
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value of the feature gets broader, the feature contributes
to a lesser extent to the modi/ed feature space yet the
abrupt “in–out” character of the Boolean reduction is not
present.

3.1. Detailed computations of the membership
functions in clusters

We start with a one-dimensional case (X =R) as
this scenario becomes the most tangible and easy to
visualize and interpret. Given the set of prototypes
{vi}; i=1; 2; : : : ; c, the membership values (viz. the re-
sulting fuzzy partition) are computed in the following
way:

ui(x)=
1∑c

j=1(x − vi=x − vj)2
(1)

(here the fuzzi/cation factor “p” was set to 2). By
sweeping the value of “x” throughout the entire space
X , the plots of the membership functions are instan-
taneously constructed. Now let us consider that the
nonnumeric (granular) input X regarded as an interval,
namely X =[a; b] is taken into consideration. The cal-
culations may follow (1) yet the determination of the
distance function has to be revisited. Let us introduce
the following de/nition, see also Fig. 1.

||X − v||
def︷︸︸︷
=

{
0; if v∈ [a; b];

min(|a− v|; |b− v|):
(2)

In limit, when X =R the distance evidently, |X − v| is
equal identically to zero.
This distance (2) is used in the computations of the

membership functions. The corresponding calculations
are carried out in the following way:

ui(X )=
1∑c

j=1(||X − vi||=||X − vj||)2 : (3)

The above calculations require some modi/cations when
the distance between X and vi becomes equal to zero
(this is obviously a non-issue in the case of numeric in-
puts X = {x}). To overcome this de/ciency, we rede/ne
(3) by accepting ui(X ) to be equal 1 under such circum-
stances,

ui(X )=

{
1; if |X − vi|=0;

(3); otherwise:
(4)

Note that as ui(x) is equal to one, the remaining mem-
bership values (for vj; j=1; 2; : : : ; c; i 
= j) are forced to
be set up to zero.
The interval-valued feature X captures the eKect of

uncertainty and it can be expressed in the form [x−�; x+
�] that is an interval centered around “x” being of a length
of 2�. The length expressed in this explicit manner helps

quantify the factor of uncertainty. Using this model, we
calculate the membership values (as indicated by (4)) for
selected values of �. The plots of these membership func-
tions are shown in Fig. 2. Noticeably, once the values
of � go up, the membership functions assume wider Nat
regions that become distributed around the prototypes.
They get sharper and more “localized” for lower values
of �.
NB. One can eventually drop this unity constraint; by

doing so we are in line with the possibilistic clustering. It
is noticeable that the granular input implies a certain de-
parture from the commonly accepted constraint and the
relationship between the size of the granules and the vio-
lation of the constraint can be easily quanti/ed. We will
not be pursuing this issue as being somewhat marginal
to the main vein of the topic.
The above /nding is extended to the multivariable case

by studying the n-dimensional feature vector. First, we
introduce a concise notation to capture an eKect of un-
certainty (granulation) of the features. Introduce a vector
of uncertainties �

�T = [�1 �2 : : : �n];

where the ith feature of xk associated with the uncertainty
factor that is quanti/ed as an interval [xki − �i; xki +
�i]. We use the notation u(x; �) to express the eKect of
uncertainty across all features. The distance function is
a generalization of that given by Eq. (2), namely the
calculations are completed coordinatewise and the results
are summed up.
If �i increases, then this eKectively gives rise to the

reduction of the feature as the expression (Xi − vi)2

attains zero. The performance index describing the
fuzzy reduction of the feature space is formulated in the
form

Q(�)=
N∑
k=1

c∑
i=1

(ui(xk ; �)− ui(xk))
2:

3.2. Set approximation of fuzzy sets

The above discussion was con/ned to the granular
data represented as intervals (or hypercubes). The rea-
son was evident: all calculations were simple. The use of
fuzzy sets (X ) instead would add a lot of computational
burden that may not be fully legitimized. If a fuzzy set
were encountered, it would be advisable to convert (ap-
proximate) it by a set and use such an approximation af-
terwards. Fortunately, this approximation is obvious and
intuitively appealing. The main /nding can be formulated
as follows

Proposition. Consider a unimodal normal fuzzy set A
de>ned in R with a continuous membership function.
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Fig. 1. Computing distance between numeric entity (v) and a granular (interval-valued) quantity X : v outside X (a) X covers v (b).

Fig. 2. Membership functions for selected values of �.

Its best approximation (in the sense of the Minkowski
distance) is a set A∗ with the characteristic function
(that is an 1=2-cut of A)

A∗(x)=A1=2(x):

Proof. Let us consider the performance indexQ express-
ing a distance between A and A∗

Q(�)=
∫ b

a
|A(z)− A∗(z)|p dz: (5)

The power (p) with p¿ 1 standing in the performance
index gives rise to the Minkowski distance between the
fuzzy set and its approximation. Bearing in mind the uni-
modality of the fuzzy set (which is quite general, any-
way), we rewrite Eq. (5) in the form of the series of

integrals

Q(�) =
∫ x0

a
Ap(z) dz +

∫ m

x0
(1− A(z))p dz

+
∫ y0

m
(1− A(z))p dz +

∫ b

y0
Ap(z) dz:

Note that the optimal threshold level (�) identi/es
two elements in the universe of discourse X , say x0
and y0 (as seen in Fig. 3) and being already used
in the above formula. That is, we have A(x0)= �;
A(y0)= �.
The optimization of Q carried out with respect to �

is equivalent to the optimization of Q with respect to x0
and y0 meaning that

Min Q(�)=Min Q(x0; y0):
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Fig. 3. Approximating fuzzy set (A) by A� through �-cut opti-
mization.

The necessary conditions leading to the minimum of Q
read as

9Q
9x0

=Ap(x0)− (1− A(x0))
p=0 (6)

and

9Q
9y0

= (1− A(y0))
p − A(y0)

p=0: (7)

Let us derive Eq. (6) step by step (the derivations of
Eq. (7) are carried out in an analogous manner). First,
we have two evident relationships

d
dx0

∫ x0

a
F(z) dz=F(x0)

and

d
dx0

∫ c

x0
F(z) dz=− F(x0)

that hold for any function F for which the above integrals
make sense. The use of these expressions in computing
the derivative of Q leads us to Eq. (6), namely

dQ
dx0

=
d
dx0

∫ x0

a
Ap(z) dz +

d
dx0

∫ m

x0
(1− A(z))p dz

= Ap(x0)− (1− A(x0))
p:

Solving Eq. (6) with respect to x0 we get A(x0) − 1 +
A(x0)= 0. This leads to A(x0)= 1=2 viz. x0 is a point
where the membership function attains �=1=2. Simi-
larly, we handle the second equation (7) which leads to
the same result as before, namely A(y0)= 1=2.
Interestingly, the threshold (that is equal to 1=2—

an intuitively appealing /nding) does not depend on
the form of the membership function itself. The gen-
erality of the /nding (that is, anyway, quite intuitively
appealing) clearly points out how fuzzy sets can be
converted into sets. An important observation is that
not all fuzzy sets are equally easy to approximate:

Fig. 4. Triangular fuzzy set and its set-based approximation.
The shadowed regions quantify the approximation error.

the higher the performance index Q(1=2), the more di@-
cult is to approximate the fuzzy set under discussion and
more questionable this approximation is. In general, it is
advisable to consider the value of the performance index
along with the resulting set approximation of the fuzzy
set under discussion. As an example, let us discuss how
a triangular fuzzy set is approximated, see Fig. 4.
Put alsop=1 (so we are concerned with the Hamming

distance). The approximation error is visualized in the
form of four triangular regions which, in total, amounts
to

Q=1=4(a+ b):

This error is a linear function of the lower and upper
bound of the fuzzy set. We can rewrite Q in the form
underlining its relation with the support of A

Q=1=4 supp(A) + 1=2a:

Obviously, the support of A; supp(A), is equal to b− a.

4. Experimental studies

The experiment uses one of the datasets available at
the UCI at Irvine [16]. It concerns a part of the Boston
housing data and consists of 250 8-dimensional patterns
(we reduced the size of the data to visualize all results).
First, the clustering was completed with the use of the
standard FCM with the fuzzi/cation factor equal to 2 and
c=7 clusters. The prototypes are summarized in Table 1.
The distance function ||:|| guiding the clustering mech-
anism is the weighted (normalized) Euclidean distance
(that is each feature is normalized by dividing its value
by the corresponding standard deviation).
Next, all combinations (28 =256) of the features are

investigated. These combinations are coded in binary.
For instance, the vector 0 0 0 0 0 0 0 1 identi/es a set of
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Table 1
Prototypes of the clusters distributed in the 8-dimensional feature space

Cluster no. Prototype

1 0.8116 3.9122 14.2760 0.0897 0.5916 6.1054 84.7475 2.9705
2 0.4682 10.1878 9.4311 0.0838 0.5210 6.3177 67.2972 4.0732
3 0.2922 17.2803 7.2518 0.0539 0.4837 6.4615 53.7833 4.8058
4 0.5323 8.6016 10.1900 0.0900 0.5332 6.2723 71.2547 3.8639
5 0.3122 16.0072 7.5226 0.0580 0.4885 6.4423 55.6263 4.6952
6 0.5889 7.3481 10.8828 0.0930 0.5441 6.2329 74.5271 3.6809
6 0.3617 13.5992 8.1571 0.0676 0.4996 6.3987 59.7660 4.4633

Fig. 5. The values of the performance index Q for successive
feature sets.

features having only a single element (the last feature). Its
decimal equivalent is one. The values of the performance
index Q for all the combinations (the x-axis includes a
decimal equivalent of the collection of the features) are
summarized in Fig. 5.
This /gure shows clearly that there are a lot of diKer-

ences in performance of the diKerent collections of the
features. Evidently, each set of features has to be de-
coded by transforming the integer number into a binary
string. The best results (collections of the features) are
identi/ed by the binary string 1 1 1 0 1 1 1 1 leading to
Q=6:0253 and 1 1 1 1 0 1 1 1 with the performance in-
dex equal to 8.2682. This means that all but one feature
(either 3 or 4) give rise to the best results. The spikes in
Fig. 5 correspond to a single-element feature set which,
as could have been anticipated, contributes to a poor per-
formance. An excerpt from the entire list of the combi-
nations of the features is given in Table 2.
There is another way of visualizing the results. In-

stead of analyzing each combination of the features, it is
of interest to investigate how the number of features af-
fects the values of the performance index. In general, one
may anticipate that the larger number of the feature set
may lead to the lower values of the performance index.

Table 2
Selected combinations of features along with their performance
index

Feature set Performance Feature Performance
index set index

1 1 1 1 0 0 0 0 45.5831 1 1 1 1 0 1 1 1 8.2682
1 1 1 0 1 1 1 1 6.0253 1 1 1 1 0 1 1 0 18.8382
1 1 1 0 1 1 1 0 17.4416 1 1 1 1 0 1 0 1 24.0651
1 1 1 0 1 1 0 1 20.7247 1 1 1 1 0 1 0 0 36.8041
1 1 1 0 1 1 0 0 31.2429 1 1 1 1 0 0 1 1 15.4062
1 1 1 0 1 0 1 1 19.5656 1 1 1 1 0 0 1 0 25.1947
1 1 1 0 1 0 0 1 29.3116 1 1 1 0 0 1 1 0 22.0126
1 1 1 0 1 0 0 0 42.6012 1 1 1 0 0 1 0 1 26.8939
1 1 1 0 0 1 1 1 12.1960 1 1 1 0 0 1 0 0 39.5637
1 1 1 0 0 0 1 1 21.8574 1 1 1 0 0 0 1 0 31.3970
1 1 1 0 0 0 0 1 34.0258 1 1 1 0 0 0 0 0 51.4628
1 1 1 0 1 0 1 0 28.5243 1 1 1 1 0 0 0 1 28.1017

Fig. 6. The values of the performance index versus the number
of features in the feature set.

Obviously, this is not a monotonic relationship. This is
clearly summarized in Fig. 6. It is noticeable that some
combinations that involve a smaller number of the fea-
tures perform better over some more numerous collec-
tions of the features.
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Fig. 7. Performance index Q for the Boolean feature reduction
(elimination) indicated by a dotted line and their granulation
(shown by a solid line) for selected values of �: (a) �=0:2,
(b) �=0:4, (c) �=0:7.

The series of /gures, Fig. 7, shows an eKect of soft fea-
ture elimination that is accepting granular features instead
of using numeric features. The experiment was completed
for three selected sizes of the information granules. To

maintain a consistency of the experiment that will help
us work out a comparative analysis, the granular input is
formed by an interval [a; b] centered around an original
numeric input “x”. The size of the information granule
itself is taken proportionally to the standard deviation of
this particular feature. Thus

X =[x − ��; x + ��];

where �∈ [0; 1] controls the size of the interval and �
denotes the standard deviation of the respective feature.
The experiments were conducted for �=0:2; 0:4, and 0.7,
see Fig. 7. Instead of eliminating the feature, we replace
it by the granular version. The results show up a clear
tendency: the performance of the granular features (and
the associated combinations) follows the results reported
for the subsets of features (viz. the features being elimi-
nated). All /gures include also the results of the Boolean
feature reduction. When � increases, the results become
very similar meaning that there is a certain point where
it does not matter if the feature has been eliminated or
granulated (intervalized).
There is another way of looking into the same results

by plotting the values of the performance index for the
Boolean and fuzzy feature elimination. This gives us a
certain insight into strength of correlation between the
values of such performance indexes. Refer to Fig. 8.
For higher values of �, say �=3:0, one can observe

almost a strong correlation (the points become distributed
along a straight line) with the correlation coeJcient being
equal to 1.

5. Conclusions

In this study, we have investigated an issue of granular
information in feature selection. It is shown that granular
features (as opposed to their numeric counterparts) give
rise to a generalization of the two-valued mechanism of
feature selection providing with its continuous version.
The soft (fuzzy) form of feature selection sheds light
on some essential links between the granularity of the
variables (features) and its “size” (expressed with the aid
of the width of the numeric interval) as well as an impact
of it on the relevance of such information granules.
The algorithmic fabric of the investigations is based

on the well-known FCM algorithm. We have discussed
a way of quantifying the eKect of granular data on
the membership functions. The proposed set-based ap-
proximation of fuzzy sets helps reduce computational
burden of the feature selection procedure. The funda-
mental result obtained in this setting is very general
(the existence of the optimal value of the �-cut) and
this becomes instrumental in better understanding of the
essence and quality of approximation delivered by the set
theory.
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Fig. 8. Performance index of the fuzzy (Qf ) and Boolean (Qb) feature selection for selected valued of �: (a) �=0:2, (b) �=0:4
(c) �=1:0, (e) �=3:0.

Interestingly, granular information can be eKectively
used to incorporate our knowledge about a lack of
precision concerning a problem at hand. For instance,
in Ref. [17] it has been shown that dynamic systems
with unknown (yet nonzero) delay can be modeled and
controlled by exploiting granular (interval-valued) in-
formation about the system rather than relying on the
pure numeric reading of the sensors. The granularity of
information introduced on purpose was intended to cap-
ture our ignorance about the delay value of the system
under control.
There is another interesting issue linked with the sub-

ject of this study. It concerns clustering heterogeneous
data where some features of data (patterns) are granular
and represented in the form of intervals. While close to
the idea discussed in Refs. [18,19], the intervalization of
the data can be captured in the format of granular proto-
types themselves. This issue of granular clustering itself
goes beyond the scope of this study and will be discussed
in the foregoing study.
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