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Abstract. The Unification-based Temporal Grammar is a temporal ex-
tension of static unification-based grammars. It defines a hierarchical
temporal rule language to express complex patterns present in multivari-
ate time series. The Temporal Data Mining Method is the accompanying
framework to discover temporal knowledge based on this rule language.
A semiotic hierarchy of temporal patterns, which are not a priori given,
is build in a bottom up manner from static logical descriptions of mul-
tivariate time instants. We demonstrate the methods using music data,
extracting typical parts of songs.

1 Introduction

Knowledge Discovery is the mining of previously unknown rules that are useful,
understandable, interpretable, and can be validated and automatically evaluated
[1]. There are few approaches for mining rules from time series, even less for mul-
tivariate time series. Some mining techniques are based on data models that can
be obtained from time series by clustering [2], segmentation [3] or discretization
[4]. Most methods concentrate on a single data model and their rules represent
only one or very few temporal concepts, e.g. coincidence [5].

Our rule language, called Unification-based Temporal Grammar (UTG), is
based on multiple data models. The problem is decomposed into the mining of
single temporal concepts. The resulting rules have a hierarchical structure that
opens up unique possibilities in relevance feedback during the knowledge dis-
covery process and in the interpretation of the results. An expert can focus on
particularly interesting rules and discard valid but known rules before the next
level constructs are searched. After obtaining the final results, an expert can
zoom into each rule to learn about how it is composed and what it’s meaning
and consequences might be. The decomposition is also of advantage for the min-
ing algorithms, because the hypothesis space for a single mining step is smaller.
We will give a detailed description of the UTG and explain the temporal con-
cepts expressible with this language. The accompanying time series data mining
framework, called Temporal Data Mining Method, will be briefly described and
applied to music data.

In Section 2 we mention some alternative methods. Section 3 describes our
rule language in detail and Section 4 outlines the mining framework. The use of
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the UTG and TDM is demonstrated in Section 5. The results of the application
are discussed in Section 6. Section 7 summarizes the paper.

2 Related work

We know of two approaches that extract rules from multivariate time series.
Both convert the time series to labeled intervals using segmentation and feature
extraction. Hoppner [6] mines temporal rules expressed with Allen’s [7] interval
logic and a sliding window to restrict the pattern length. The patterns are mined
with an a priori algorithm using support and confidence and ranked by an
interestingness measure afterwards. Last et. al. [3] mine association rules on
adjacent intervals using the Info-Fuzzy Network (IFN). The rule set is reduced
using Fuzzy theory.

The next two methods also work on interval sequences, that could be obtained
from time series in analogy to the approaches above. Villafane et. al. [5] search
for containments of intervals. A containment lattice is constructed from the
intervals and rules are mined with the so called Growing Snake Traversal to
reduce the storage space required by the naive algorithm. Kam and Fu [8] use
Allen’s interval operators to formulate patterns. The rules are restricted to so
called A1 patterns, that only allow concatenation of operators on the right hand
side. The patterns are mined with an a priori algorithm.

The remaining approaches work on symbol sequences possibly obtained from
time series. Mannila et. al. discover frequent Episodes [9] using an a priori style
algorithm. Das et. al. [2] use clustering of short time series segments extracted
with a sliding window to produce a sequence of cluster labels. The symbol se-
quence is mined for association rules within a time window interpreted as if-then
rules. An extensions to multivariate time series is proposed. Recently, Saetrom
and Hetland [4] criticized the restrictive rule languages (e.g. for Episodes) needed
to make many mining approaches feasible. A general rule language, that includes
many others as special cases, is proposed. The patterns are mined using Genetic
Programming [10]. The candidate patterns are evaluated using special hardware
to speed up the search.

3 Unification-based Temporal Grammar

The Unification-based Temporal Grammar (UTG) is a rule language developed
especially for the description of patterns in multivariate time series [11] [12].

Unification-based Grammars are an extension of context free grammars with
side conditions. They are formulated with first order logic and use unification.
The use of Definite Clause Grammars over Context Free Grammars makes it
possible to formulate semantic side conditions. The conditions are checked while
the rules are evaluated and they can also be used to interpret the semantics of
the rules.

The UTG offers a hierarchical description of temporal concepts. With a hier-
archy of semiotic levels complex patterns are successively built from lower level
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constructs. Starting with simple patterns, called Primitive Patterns, and using
intermediate concepts called Successions, Events, and Sequences, the final rules,
called Temporal Patterns are created (see Figure 1).
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Fig. 1. Unification-based Temporal Grammar

At each hierarchical level the grammar consists of semiotic triples: a unique
symbol (syntax), a grammatical rule (semantic), and a user defined label (prag-
matic). The grammatical rule is produced by a mining algorithm for this hierar-
chy level (see Section 4). An expert is needed to interpret the rule and complete
the triple with a meaningful label. Optionally, the symbol can also be set to a
meaningful abbreviation. An example of such a semiotic triple is shown in Fig-
ure 2. The generated rule describes a Primitive Pattern (a state assignment for
a time point) by two interval conditions. An expert could diagnose this as a beat
from a bass drum, assign the appropriate label and choose e.g. BD as a symbol.

symbol: BD
rule: A PrimitivePattern is a ’BD’
if
’1t770Hz’ in [-6908.37, 15860.27]
and
’1t920Hz’ in [-2079.46, 17153.04]

label: bassdrum

Fig. 2. A semiotic triple

In absence of a domain expert, the unique symbols and labels can be gener-
ated automatically during the mining process, but they should be adjusted later
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for better interpretation. One semiotic triple describes a class of constructs, each
class usually has many instances occuring at certain time points or during certain
intervals.

On each level we allow a special blank symbol, called Tacet!, to express the
fact, that there is no UTG construct for a time point or interval. Short, not
plausible interruptions of an otherwise persisting state are called Transients.
The maximum length for Transients is application and level dependent. A group
of related time series is called Aspect.

A Primitive Pattern describes a single point in time. It represents a temporal
atom, because it has unit duration. Not every time point needs to represent a
state, points can be labeled as Tacets. We allow all rules that map the data
space of an Aspect to a symbol representing a class or to the complement of the
class, i.e. classification rules, not temporal rules. This very general definition is
informally constrained as follows: The classification rules should be given in first
order logic (FOL), possibly extended by an estimation calculus, for example a
conjunction of interval conditions. This ensures that the rules can be automati-
cally evaluated by an expert system. The resulting data model for each Aspect
on this hierarchy level is a sequence of discrete symbols including the Tacet label.

A Succession introduces the temporal concepts of duration and persistence.
It represents a time interval where nearly all time points have the same Primi-
tive Pattern label. The data model for each Aspect on this hierarchy level is a
sequence of labeled intervals, including Tacet intervals.

An FEvent represents the temporal concepts of coincidence and synchronicity.
It represents a time interval where several Successions overlap. If the distances
between the first and last start point and between the first and the last end point
of all Successions are below a threshold, the Event is called synchronous. Note,
that only Events work on multivariate input data in form of several Succession
series, the other hierarchy levels have univariate input data. The user interaction,
in form of an expert choosing a label, is very important for Events. While a label
can be generated from the Succession labels and durations involved, a short and
precise label based on application insight will be easier to grasp in higher level
constructs. The common data model for all Aspects on this hierarchy level is a
single sequence of labeled intervals, including Tacet intervals, where no Events
were found.

A Sequence introduces the temporal concept of order. A Sequence is com-
posed of several Events occuring sequentially, but not necessarily with meeting
end and start points. A Sequence is thus a typical subsequence of the Event
sequence ignoring Event and Tacet durations. The common data model for all
Aspects on this hierarchy level is a set of labeled intervals.

A Temporal Pattern is the abstraction of several Sequences based on al-
ternatives. Several similar Sequences, differing in only a few Events, form a
Temporal Pattern.

A Tacet is the pausing of an instrument or voice in a musical piece
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4 Temporal Data Mining Method

The time series Knowledge Discovery framework Temporal Data Mining Method
(TDM) is described briefly.

The starting point of the TDM is a multivariate time series, usually but
not necessarily uniformly sampled. The knowledge discovery steps of the TDM
are shown in Figure 3. First, preprocessing and feature extraction techniques
should be applied where necessary. An expert should group the set of time se-
ries into possibly overlapping subsets, the Aspects. The series within an Aspect
should be related w.r.t. the investigated problem domain. In the absence of such
prior knowledge, one Aspect per time series can be used. The remaining steps
correspond to the hierarchy levels of the UTG and are described below.
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Fig. 3. Temporal Data Mining Method

Since the amount of data in multivariate time series is usually very large
some abstraction mechanism is necessary to make the detection of regularities
possible. Finding Primitive Patterns, i.e. reducing the large amount of distinct
high dimensional values in a (multivariate) time series to a limited number of
state labels provides such an abstraction. Each Aspect is treated individually
to produce a discrete state sequence, possibly containing gaps in the form of
Tacets.

For univariate Aspects many existing discretization techniques can be used,
e.g. [13] [14] [15] [16] [17] [18]. It is important, that the symbols are accompanied
by a rule and a linguistic description like high or convezly increasing.
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For Aspects spanning several time series, it is often better to use clustering
and rule generation on the spatial attributes. If the process alternates between
several regimes or states, these regions should form clusters in the space spanned
by the spatial attributes. In [19] we used Emergent Self-Organizing Maps [1] to
identify clusters in the dataset. The rules for each class were generated using
the Sig* Algorithm [20]. Other combinations of clustering and rule generation
algorithms can be used as well.

A simple, straightforward algorithm is used to create Successions of Primi-
tive Patterns. Transients are filtered out in a post-processing step. For this filter,
the user needs to specify the maximum length of an interruption.

All Events maximal w.r.t the number of aspects involved and the length of
the interval can be found with a linear time algorithm. Synchronous Events are
identified, given a range threshold. The resulting Events are usually filtered by
an interestingness measure, e.g. by length or frequency. Additionally, Transients
can be filtered out.

A rather difficult step of the conversion process is the discovery of Sequences.
We are using an algorithm based on Sequitur [21], that builds a hierarchical
grammar from a sequence of discrete symbols in linear time. Alternatively, we
have successfully used a simple genetic algorithm.

Since sequences can and often do overlap, the last step tries to find generalized
Sequences, call Temporal Patterns. The distance between two Sequences can be
calculated with a string distance metric and hierarchical clustering can be used
to find groups of similar sequences.

5 Application

We applied the TDM to a multivariate time series extracted from audio data.
Sound in audio CD quality is sampled at 44KHz and not multivariate at first
sight. For stereo sound there are two channels, usually highly correlated. This
essentially univariate time series does contain a lot of information, though. Many
sounds, that can be modelled as combinations of sine waves, are overlayed. We
therefore extract multiple channels from the univariate time series to describe
different features.

A straightforward way to obtain a multivariate series is to calculate the
loudness in different frequency bands using the Short Time Fourier Transform
(STFT). The frequency bands and some weighting factors were chosen accord-
ing to psychoacoustic models as used by Pampalk et. al. [22]. Nine frequency
bands were placed between 1.5KHz and 6.4KHz, because these frequencies are
most relevant for the human auditory perception [22]. Two more bands cover
the remaining low and high frequencies. We are also experimenting with more
complex features describing the current pitch or beat [23]. For this analysis, only
the loudness features were used.

One Aspect per frequency band was created. Alternatively, groups of cor-
related neighboring frequency bands could be merged into larger Aspects. The
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windows size for the STFT was about 0.1 seconds with 50% overlap. This pro-
duces a time series with about 5k samples for a typical 4 minute song. The series
was smoothed with a weighted moving average using a window of width 10.

Each univariate aspect was discretized using a histogram with percentile
based bins corresponding to the labels low (40%), medium (20%), and high
(40%). See Figure 4 for a typical plot of the Pareto Density Estimation [24] with
the histogram bins. Figure 5 shows one of the semiotic triples created.

x10* 12320Hz

Fig. 4. Loudness probability density

symbol: M
rule: A PrimitivePattern is a M’
if
’1t4400Hz’ in [3244.18, 7328.63]

label: medium

Fig. 5. A Primitive Pattern triple

Only very short Successions were filtered out, to keep a high level of detail
corresponding to elementary sounds. Figure 6 shows the Primitive Patterns and
Successions of one frequency band over a time window of 45 seconds. A typical
semiotic triple is listed in Figure 7. Note, that the label is inherited from the un-
derlying Primitive Pattern. The minimum and maximum duration is annotated.
There are several Transients removed around the sample indices 800 and 1600.

Most Events lasted less than a second, representing elementary sounds. The
interpretation of Events is relatively easy, because the original audio data is
available. By listening to all instances of an Event labels like guitar riff, bass
drum, scream etc. can be assigned. The bottom row of Figure 8 shows some
Event instances found in 37 seconds of the song Island In The Sun by Weezer.
The high activity over all frequency bands from sample index 2000 to 2350 with
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Fig. 6. Successions in 45 seconds audio data

symbol: L
A Succession is a ’L’
if

’L’ lasts [2, 15]

label: low

Fig.7. A Succession triple

several events found corresponds to the chorus of this song. In Figure 9 you can
see part of the triple for a typical scream present in the song Bad Habit by The
Offspring.

The Sequences usually lasted between 5 and 10 seconds, representing typical
parts of the song. Again, interpretation is fairly easy. Figure 10 shows the most
frequent Sequences found in the song by Weezer. Sequence 9 in the second row
corresponds to the chorus mentioned above. Figure 11 lists the semiotic triple.

The Sequences 2, 0, 11, and 3 occur partly during the same time intervals
and partly during adjacent intervals at the beginning of the song. A closer look
at a more compact representation in Figure 12 reveals a high similarity between
them. These Sequences should thus be merged into a Temporal Pattern, the final
form of the UTG representation.

6 Discussion

The results on audio data are promising. The TDM found typical parts in 11
songs of from different genres. These typical parts could be used for further anal-
ysis and feature extraction [23]. Determining the similarity of different songs
based on a typical part of each should give better results than using an ar-
bitrarily placed window. Compared to using the whole song, the storage and
computational effort is tremendously reduced.
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Fig. 8. Events in 90 seconds audio data

symbol: S
An Event is a ’S’
if
’1t1480Hz high’
coincides with
’1t1720Hz low’

coincides with
’1t6400Hz high’
coincides with
’mt6400Hz high’
lasts
[3,26]

label: scream

Fig. 9. An Event triple

A validation of the results other than listening to the extracted samples is
difficult, but for the above mentioned application it should be enough to have
some typical part, not the most typical.

The discretization of the loudness into Primitive Patterns leaves room for
improvements. Instead of percentile based bin boundaries, the modes of the
energy distribution should be taken into account, e.g. by using Gaussian mixture
models.

Note, that Sequences are very robust with respect to the single Event du-
rations and the length of the gaps between consecutive Events. Grounded on
the underlying Event instances, a Sequence bridges the gaps by including the
Tacet intervals in the final Sequence interval. This is especially helpful for audio
data, because longer consecutive audio samples are extracted. While we see this
robustness and completion as an advantage of our method, for some applications
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Fig. 10. Sequences in a song

symbol: C
A Sequence is a ’C’
if

’almost all high energy’ lasts [5, 10]
followed after [2, 4] by

’all high energy’ lasts [4, 12]
lasts

[53, 200]

label: chorus

Fig.11. A Sequence triple

constraints on the length of the gaps might be needed. The instance of Sequence
2 in Figure 11 at the sample index 2500 seems to span too large gaps.

One could criticize the manual interaction needed for our mining method.
Many parameters need to be adjusted. Based on the intermediate results, deci-
sions have to be revised and previous mining steps have to be rerun. But this
is only needed during the Knowledge Discovery phase. Automating this step is
not advisable, because (partial) results should always be carefully validated. The
hierarchical structure of the Unification-based Temporal Grammar offers unique
possibilities for the expert to interpret, investigate and validate the discovered
rules at different abstraction levels and change parameters based on this analy-
sis. The application of the temporal rules to new data can be automated using
an expert system interpreting the logical UTG rules. We are working on finding
a robust set of parameters for audio data, to automate the location of typical
song elements.
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Fig. 12. Similar Sequences

A detailed analysis of Successions indicated, that allowing the concept of or-
der on the Succession level, might improve the results. This way Events would be
more robust towards little time shifts and varying durations of typical Succession
patterns. While the data model for Events is currently univariate, we are exper-
imenting with algorithms allowing overlapping Events. However, this increases
the number of Events found and makes mining Sequences more problematic.

7 Summary

We have described our temporal rule language and the accompanying time series
knowledge extraction framework. Many methods and algorithms can and need
to be combined to mine rules in UTG notation. The UTG builds up a hierarchy
of concepts that introduces the temporal concepts duration, coincidence, syn-
chronicity and order at successive levels. Rules from each level are accompanied
by linguistic descriptions, thus partial results can be interpreted and filtered by
experts. All mining steps were demonstrated using audio data. We were able to
find typical parts in songs from different genres.
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