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Abstract

A generalization of Allen’s interval-based approach to temp@@soning is presented.
The notion of ‘conceptual neighborhood’ of qualitative relations between events is central to the
presented approach. Relations between semi-intervals rather than intervals are used as the basic
units of knowledge.Semi-intervals correspond temporalbeginnings or endings of events.
We demonstrate the advantages of reasonintp@basis ofsemi-intervals: 1) semi-intervals
are rather natural entitidgsoth from a cognitive and from a computational point of view;
2) coarse knowledge can be processieectly; computational effort is saved; #)complete
knowledge about events can be fully exploited; 4) incomplete inferevams on thdasis of
complete knowledge can be used directly for further inference steps; 5) there is no trade-off in
computational strengtfor the added flexibility and efficiency; 6)for a natural subset of
Allen’s algebra, global consistency can be guaranteed in polynomial time; 7) knowledge about

relations between events can be represented much more compactly.
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TIME IS A MASK WORN BY SPACE
Robert Fulton [6]

1 Introduction

1.1 Background

In his paper on maintaining knowledge about temporal intedeatsesAllen introduces a
temporal logicbased on intervals antheir qualitative relationships intime [1]. Allen’s
approach is simple, transparent, and easynptement. The basic elements of Allen’s theory
are intervalcorresponding to events (rather than points correspondimgtemts),qualitative
relations between these intervals, and adgebrafor reasoningabout relations between

intervals.

The appeal of Allen’s approadtastriggered a variety of research enterprises within and
beyondtemporalreasoning. For exampléJlen and Hayeg2, 10] and Ladkin[14] develop
axiomatic frameworks for the theory; Vilaidautz, van Beek20, 21]and Nokel [19] study
the computational complexity of Allen’s reasoning scheme and of some varaisgen[9],
Mukerjeeand Jo€[18], Freksa [7],and Hernandez [12] transféne approach to the spatial
domain; Ligozaf16] generalizes the interval-concefar reasoning with chains advents;
Deanand Boddy [4] and Dubois and Prade [5] focusimomplete and fuzzy knowledge;

Ladkin [15] presents a survey ofterval-based constraint reasoning andesected biblio-

graphy.
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1.2 A cognitive perspective

The present paper approaches the issue of represemignd temporateasoning from
a cognitive perspective: in addition to the logicahstraints considered by Allen, wake into
account neighborhood relationships between temporal relations; thiiisated primarily by
physical constraints on perception. These relationgrepsit to restrict Allen’s algebra in an
interestingway. The result is increased inferencing efficiency while fethsoning power is
maintained. The inferencing behavior of the modified approach becomes ‘cognitively plausible’
in severalrespects. A higldegree of regularity in Allen’s knowledge base becomes visible
throughthe additional relationshipsthis allows for adrastic compaction of the inferencing

knowledge base.

Allen [1] discusses the formal problem that arises when representing instantaneous events
by points on the real line. This problem is due to the fact that logical inconsistencieghanse
events are allowed to have zero duration. Besides the arguadientprovides againghe use
of points onthe realline, namely physical antbgical argumentsthey are not appropriate for
modelling events from a cognitive perspecteither. We knowthat events have to have a

certain extent, both in time and in space, in order to be perceivable [11].

Hayes and Allen [10] distinguish between events, which always have damatéon, and
durationless abstract time points — temporal locations associated with events or with transitions
between events. In the present paper we only consider ‘real’ events as in [1] and we agree with
Allen that they must not be represented by points on the real line. We alsthagcpealitative
knowledge aboutemporal affaircan bebased on events. However, we nat agree with
Allen’s conclusion that intervals should be used as the representational prifaitiveasoning

about events.

We must carefully distinguish between an ontological representatioteroporal

relations, i.e., the representation of a specific set of mutually compatible temghatiahs, and
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the representation dénowledgeabout temporalrelations. If we knoweverything about all
relations, the distinction is insignificant; but if weal with incompleteknowledge, thisnakes
a big difference. Typically, we do not hageempleteknowledge aboutemporal relations
between events to start with; but even if we do, after only one inference stepyw®t have

complete knowledge about the inferred relations.

Allen’s interval-based approadhvorsthe representation of ontological states of affairs:
a completelyknown temporal relation betweetwo events is expressed bysienple relation
between two intervals. The representation of incomplete knowleddiee mtherhand, creates
a cognitivelyawkwardsituation: theless we know,the more complex the representation of
what we know becomes. What is known is represented in terms of disjunctions aowldat

bethe case.

From a cognitive point ofiew, we prefer to represent what kmnown more directly and
in such a waythat less knowledge corresponds tosempler representation than more
knowledge does. For this reasamd for reasonstated in thdollowing sections we will use
‘beginnings’ and ‘endings’ of intervals as representational primitives. maieonly know the
temporal beginning or ending of an evelror example, wenay only have information about
the birth or the death of a person, but not both; omagknow that a certain event Wid not
start before a given event X, but we do kwbw if X and Y started simultaneously or if Y
started after X. In manyases useful inferencesan bedrawn from suchincomplete

knowledge, in some cases even without any loss of information.

2 Temporal knowledge about the physical world

An event is something that happens. Beginnings of events alaksyplacebeforetheir
endings. If wdet the beginnings and endings of two evehive thregpossiblequalitative

relations: <, =, >, then two events whistart in a beginning anérminate in arending have
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thirteenpossiblequalitative relation$3]. These correspond tine relations thatwo ordered
pairs ofrealnumbers (the boundaries @fal-valued intervals) can hawederthe relations <,

= >,

Note that we do not assume that beginnings and endings of events corresihendnid
points of real-valued intervals [2]. Rather, beginnings and endirggsonsidered (recursively)
as events themselves. Thus, at one level of consideration beginnings and endings wilevents
appear as atoms (conceptpaints) while at a higher resolution they will appear as grains

which themselves start in beginnings and terminate in endings.

Allen denotes the thirteen relations between two eventshefibre (<), after (>), during
(d), contains(di), overlaps(o), overlapped-by0i), meets(m), met-by(mi), starts (s),
started-by(si), finishes(f), finished-by(fi), andequals(=). Figure 1 associateke thirteen
relations by means of a four-coordinaédle with the corresponding relations between the
beginningsa, A and the endings, Qof thetwo events. The figureshows howthe relations
may bedistinguished by considering only a subsetrefations between beginnings and
endings. For example, to distinguish the relatiefore(<) from the twelve other relations it is
sufficient to note thab < Aand to distinguishhe relationstarts (s) from the other relations it
is sufficient to note thatt = A and w < Q. In no casemore thantwo relations between
beginnings and endings of events must be knowmriaquely identifying the relation between

the corresponding events.
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Figure 1: The thirteen qualitative relations between two events characterized by relations
between their beginnings A and their endings, Q.

The reason that such incomplete information about events sufficadly characterizing
their qualitative relations is due to two domain-inherent conditions: 1) the beginnings of events
take placebefore theirendings ¢ < w, A < Q) and 2)the relations<, =, >are transitive.
Without theseconditions, 3 = 81 relations between tHeur beginnings and endings of two

events would be possible.
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Allen usesthe thirteerpossible relations betwedéwo events as a basis fortlzeoretical
framework fortemporalreasoning. Imaddition to Allen’s theory we wiltake into account
considerations aboudttow cognitive systems establistelations from observinthe realworld.
In observing the reakorld, there will be situations imhich only partial knowledge about the
domain is availabland in which uncertainty exists as to which thé mutually exclusive

abstract relations holds.

2.1 Incomplete knowledge about events

In many temporateasoning situations we do not havekimow everything about the
involved events in order to infer what we wanktow. Forexample, in order taletermine
that Newton livedeforeEinstein it is sufficient to know thadewton’s death tookplacebefore
Einstein’s birth; itdoes nothelp if in addition weknow when Newton was born or when
Einsteindied. Actually, we can derive complete qualitatikeaowledge abouthe relations
between the birth and death dates involved, due to the domain-inherent conditions mentioned in

the previous section.

Of course wemay encounter situations which the availableknowledge is insufficient
for determining the complete answer to a quengwever, goartialanswermay be better than
no answer at all. For example, way want to know if two artistsnay have been influenced
by each other. All we know is that X was bdrefore Y’s death anthat X died after Y. We
do not know who was born first. Frotiis information wecan conclude that Y liveduring
X' lifetime or he startedX’ lifetime or his life overlappedwith X' life. Although we can not
infer who was the older artist or which wie periodwhenthey bothlived, atleast weknow

that there was a common period.

With Allen’s representation, it is possible to expréss situation of the example given
above as follows: “X was born before Y’s death” can be expressed agetdeforeY or X’

life meetsY’s life or X’ life overlapsY’s life or X’ life is finished byY’s life or X’ life contains
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Y’s life or X' life is started byY’s life or X’ life equalsY’s life or X' life startsY’s life or X
lived during Y’s life or X finishesY’s life or X' life is overlapped byy’s life”, and “X died
after Y” can be expressed as “X’ lifentainsY’s life or X’ life is started byY’s life or X’ life
is overlapped byr’s life or X’ life is started byY’s life or X lived after Y”. The inference step
then consists of forming the conjunctiontbé two sets of disjunctions: “Xiife containsY’s
life or X’ life is started byY’s life or X' life is overlapped byY’s life” which isequivalent to

the conclusion derived above.

2.2 Neighborhoods vs. disjunctions

As suggested ithe introduction, it does noappear cognitively adequate to represent
coarse knowledge in terms of disjunctions of finely graiakernativepropositions,although
this representation may be logically correct. Coarse knowledgspsceal form ofincomplete
knowledge. The missing knowledge corresponds to fine distinctions at@amotmade. The
alternatives allie in thesame ballpark of a conceptualization, they are ‘conceptighbors’.

For use in future parts of this paper, we make the following definitions:

Definition 1: Two relations between pairs of everaie (conceptual)neighbors,if they

can be directhftransformed into one another by continuously defornjing

(i.e. shortening, lengthening, moving) the events (in a topological senge).

Examples:  The relationsefore (<) and meets(m) are conceptuaheighbors,since
they can be transformed into one another directly by lengthening one of the

events.

The relationsbefore (<) and overlaps(o) are not conceptuaheighbors,
since a transformation by means of continuous deformation camlytake

place indirectly (via the relatiomeetqm)).
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Definition 2: A set of relations between pairs of evefasns a(conceptual) neighbor
hood if its elements are path-connectéarough ‘conceptual neighbor

relations.

Examples:  The relatiorisefore(<), meets(m), andoverlaps(o) form aconceptual
neighborhood since they can be transformed into one another by a chain of
direct continuous deformations dahe associated events arall three

relations are contained in the neighborhood.

The relationsbefore (<) and overlaps (0) do not form aconceptual

neighborhood.

Note: For reasons of consistency, the two degenerate cases of a single relation and

of all thirteen relations are included in this definition.

Definition 3: Incomplete knowledge about relationscalled coarse knowledgeif the
corresponding disjunction of deast two relations forms a conceptual

neighborhood.

Examples: The disjunctiobefore or meetsor overlaps (< m 0) represents coarse
knowledge about the relation between two events; the disjuriztioneor

overlaps (< 0) does not represent coarse knowledge.

Note: The case of a single relation is excluded here, since this@assponds to

complete knowledge.

If temporal relations are perceived incompletely, the resukmgwledge istypically
coarseknowledge. Aperception channel will not generate the set of alternatives X or
X oY orXoiY (9, Figure 3]), forexample. The reasonthat these alternatives are not

generated without thtermediate relations is that the |&sto alternatives of this disjunction



Freksa Temporal Reasoning Based on Semi-Intervals 10

have drastically different perceptual appearances — they vary in seseeals. Ithe system
cannot distinguish alternatives differing in several aspects, then it cannot distaltgnsatives
differing only in a subset ahese aspectsthus, itwill considerthe neighboringintermediate
alternatives asvell. As wewill show inchapter 4, temporakasoning orthe basis of the
thirteen interval relations will either yield compldteowledge or coarsknowledge,but never

scattered disjunctions.

Incomplete knowledgeconsisting of non-neighboringlternatives may be available,
however, from more abstract knowledgmurces. Foexample, a story understanding system
may have knowledge abotlte qualitative relation afwo events X and Y buack knowledge
about their identity. Thus, twonon-neighboringalternatives X < Y and X > Y cannot be
distinguished while neighboring alternativean. In this case, twdistinct (mental) images
would correspond to the two alternatives, rather than a single coarse image. In such situations,
it appears ‘cognitively justified’ tasethe abstract concept of a disjunctimm the representa-

tion of alternatives.

Thus, we make a distinction between knowledge incompleteness which dgesmibta
fine resolution of closely related variants within @eighborhood(lack of knowledge about
details) and incompleteness whidbes notpermit theselectionof the appropriate alternative
(lack of knowledge abowgssentials). Ithe formersituation, we want to express knowledge
directly on the granularity level on which it is available, i.e., we represent neighborhoods. As a
side-effect, we will have to represent only knowledge which is positaxedijable; we do not
have to carry along the burden of the possibilities that reopn due tdack of more detailed
knowledge. Irthe lattersituation, knowledge representation in terms of disjunctioag be
appropriate. However, bestructuring th&knowledge, itmay bepossible to find representa-

tions in terms of neighborhoods, for such situations as well.
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3 Semi-intervals and conceptual neighborhoods

According to the considerations presented in pihevious sections, wevill represent
knowledge about time in terms of relationships between beginnings and endings of events. We
call beginnings and endings of events ‘semi-intervals’. (Semi-inteavalgquivalent to what
Allen and Hayes call ‘nests’ [2]). In relating events, an ending of an event will be called ‘equal’
to the beginning of another event if the former event meets the latterddnto support the
following discussionmnemonically, we will introduce special labéigr the relationships

between semi-intervals. These labels will be used in addition to the labels introduced by Allen.

We will say X isolder (ol) than Y when the beginning of X is letgan the beginning of
Y. Xishead to headhh) with Y when their beginnings are equal and X/@singer(yo) than
Y when the beginning of X is greater than the beginning of Y. Accordingly, wesayill X is
survived by(sb) Y, X is tail to tail (tt) with Y, or X survives(sv) Y whenthe ending of X
is less than, equal, or greater than the ending of Y, respectively. WsawiX precedeqpr)
Y, when the ending of X is not greater than the beginning of Y, wesayll X succeed$sd)
Y, whenthe beginning of X is notess than the ending of Yptherwise(i.e., when the
intersection of X and Y is not empty) X izantemporary(ct) of Y. If X does notprecedey,
we will say X isborn before death dfod) Y and if X does nosucceedy, we will say X died

after birth of(db) Y. These relations are shown in Figure 2 (compare Allen [1983], Figure 2).

Relation Label Inverse lllustration
X is olderthan Y ol XXX??27?7?
Y is youngerthan X yo YY
X is head to headvith Y hh XXX??

hh YYYY
X survivesY SV P2?7?2XXX
Y is survived byX sb YY
X is tail to tail with Y tt P2XXX

tt YYYY
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X precedesf pr XXX?

Y succeedX sd YYY

X is acontemporaryof Y ct PXXX???
ct 2?22YYY?

X is born before death of bd XXX???2?2?

Y died after birth ofX db ?2?2??7?YYY

Figure 2: Eleven semi-intervatelationships. Question marks (?) ithe pictorial illustration

stand for either the symbol denoting the event depicted in the same line (X or Y) doldoka

The number ofjuestion marks reflecthe number of qualitativelglternative implementations
of the given relation.

Combining constraints from above we obttie relationsolder & survived by(ob),
younger & survivegys), older contemporarfoc), surviving contemporary(sc), survived-

by contemporarybc), andyounger contemporarfyc).

3.1 Uncertainty about temporal relations

Allen’s compositiontable [1, Figure 4] establishesthe set of theoreticallypossible
relations between two intervals which both hawkaawn qualitative relation to a thirchterval.
The table does not represent knowledge about the effects of small variations or degradations in
the input knowledge, specifically, lack of knowledge about certain details. Such variations may
be present in th&nowledge abouthe realworld due toperceptual uncertainty and/or the
dynamics of the domainFor example, wenay notknow if event X takeplacebeforeevent
Y, if X meetsY, or if X overlapsY, but we candistinguish thesehree options from the

remaining ten alternatives.

Uncertainty as to whichemporal relatiorholds betweentwo events does ndypically

mean that any of the thirteen relations are considaosdible by gerceiving cognitive system
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— otherwise the system is not perceiving. Rathecertainty may exist betwedew options.
Furthermore perceptual uncertainties usually do not cause large jumpleiconclusions;
rather, conceptually relate@ptions are obtained. In order tonodel such lateral knowledge
dependencies, we structuitee temporal relations between events according to a conceptual
neighborhood relation. This neighborhamthtion is determined bgur understanding as to

which uncertainties in perception are physically feasible and/or cognitively plausible.

3.2 Conceptual neighborhoods among temporal relations
natura non facit saltus

Linnaeus

According toour definition of conceptuaheighborhood in sectio.2, wearrange the
thirteen mutually exclusive relations between eventssich a waythat conceptually
neighboring relationbecomeneighbors in our depiction. FiguresBowsthis arrangement.
Thetwo eventsare depicted by a dumbbell-shage# and a rectangle, respectivelyime is
assumed to proceed from left to right. We obtain two dimensions of neighborheodertical
dimension corresponds the relative times atvhich the eventstake place; the horizontal

dimension corresponds to the relative duration of the events.
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Figure 3: Left: Temporal relations between two events arranged according tcotieptual
neighborhood. Right: The corresponding labels arranged accordingly.

Depending on théypes of deformation of events atiir relations, weobtain different
neighborhood structures. If we fix three of the four semi-intervate/@fevents anallow the
fourth to be moved, webtain theA-neighborrelation(Figure 4). If weleave theduration of
events fixed and allow complete events to be moved in time, we obtaBirtaghborrelation.
If we leave the ‘temporal location’ of an event fixed (reflected.example, bythe midpoint of
the correspondingnterval) and allow the duration of the eventsviry, we obtain theC-

neighborrelation.
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A-neighbors B-neighbors C-neighbors

Figure 4: Differing deformations of events induce different neighborhood structures.

Which of theseoptions is most appropriatenay depend on the specific domain of
reasoning. Unless otherwise notdkde statements irthis paperare independent of the
particular choice. We thereforelepict themost demanding situation wittihe most liberal

interpretation of the neighborhood relation where all three neighbor relations are permitted.

For easy visual reference to the thirteen temporal relations betweentervals andheir
neighborhood relations aepicted inFigure 3, we willuse icons symbolizinghe neighbor-
hood structure ashown in Figure 5.The blackdots indicate which of the thirteen relations

within the structure is being referred to. Below the icons the corresponding labels are indicated.

EARALEAREERE

< m o fi di si = s d oi

Figure 5: The thirteen qualitative relations between intervals depicted by icons.
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| am puttingforward the thesis herghat if a cognitivesystem is uncertain as to which
relation betweeriwo eventsholds, uncertainty can be expected particularly between neigh-
boring concepts. The introduction of movement intour static domain of relations is not
intended to make a complex situation even more difficult; rateegdestthat we easily can
discover neighboring concepts by imagining gradual changi irepresentediorld and by
observing the corresponding state transitionthénconceptualvorld. This will turn out to be
very helpful for adequately representing statgituations, particularly for representing

uncertainty.

4 Neighborhood-based reasoning

In this chapter, wewill first revisit temporal reasoning ornthe basis ofthe thirteen
relations used by Allen. Allen’s composititeible isdiscussed ihe context of the@eighbor-
hood-based representation. This leads to some observations regarding the strienoperaf
knowledge. Orthe basis oftheseobservationsconceptualneighborhood isxploited more

radically. The resulting approach is presented in the remainder of the chapter.

In order to visualize the use of the concepheifihborhood relations, we preséilen’s
composition table in an arrangement whixkserves some difie neighborhood relations: the
rows and columns are arranged snch a waythat neighboringrows and columns always
correspond to neighboring preconditionghe sensedefined above. The two neighborhood
dimensions span a 4-dimensional (2*2) composition structure. Since it is not easy to depict a 4-
dimensional structure on papene depict a linearized version of the structure:Figure 6 we

arrange the rows and columns accordinth&following sequence:<, m, o, fi, di, si, =,

1 For the discovery of the regularities and the development of the reasoning system pregainethdwas im-
plemented in HyperCard which aided in representing and manipulating the 4-dimensional neighborhood structure.
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s, d, f, oi, mi, >. (This is one of two possible ways of listing tleéationssuchthat each is

listed exactly once and that all neighbors in the list correspond to neighbors in Figure 3.)

In addition, inthe new compositiortable temporal relations amresented ircanonical
form by icons as developed the previous section (instead afbitrarily arranged mnemonic
labels). This is done faeveral reasons: 1) éanonical arrangement of relations makes the
regularity of the internastructures more visible; 2he conceptuaheighborhood relations
between temporal relations are directly reflected in the icon structure; Bptiseallowfor the
direct representation of coarse relations (rather than as disjunctions of fine relations); and 4) the
representations can heseddirectly for performingsimple operations. Coarseelations are

represented by superposition of the corresponding icons from Figure 5. For example,

7

corresponds to the disjunction of the relatiensn, o, s, d, and

9

corresponds tthe disjunction ofall thirteen relationavhich meanghat no constraint on the

relationships between the events is given.
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Looking at the composition structure depictedFigure 6, wecan make aaumber of

observations:

1)

2)

3)

4)
5)

6)
7)

only a fraction of the inferences that can be drawn from the compdsitienaregiven in
terms of unigue relations between intervals; moshetonclusions appear in terms of
disjunctions of alternative relations;

thesets ofalternative relations in the entries of Allen’s compositiable always form
conceptual neighborhoods;

in many cases, the transition to neighboring entries leasisbimeighborhoods or super-
neighborhoods rather than to completely different relations;

the transition to neighboring entries never causes to a jump to non-neighboring relations;
only a small fraction of combinatoriallyossible neighborhoodsctually appears in the
table;

there is a lot of symmetry which may be exploited for temporal reasoning;

the observations are valid not only with respedh&presented linearizewighborhood

table; they hold for the complete 4-dimensional structure.

Observations 1) and 2) should notdmnpletelysurprising,since the structure exhibits

gradual transitions from one qualitative state to another; only one (micro-) feature is changed at

a time; these microfeature transitions correspond to the neighborhood relatiomstimcture.

Observation 3) is very useful since it allofes reasoning under uncertainty. Observations 4)

and 5) provokethe question ofthe cognitive significance of theeighborhoods. If the

neighborhoodsappear to correspond tognitive relevantconcepts,may be thereasoning

should be done based trese neighborhoods which correspond to classes of relatites

than on the individual relations themselves.
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Note that theneighborhoodshat arefound inthe table either are containedaur list of
concepts derived from relating semi-intervéifsgure 2) orare obtained by conjoininguch
concepts (except for the non-informative emmyorresponding tehe disjunction ofall thirteen
relations betweeriwo intervals). Figure 7 associatéise icons andtheir corresponding
neighborhoods withheir mnemonicstheir associatethbels,the corresponding list ofllen-
relations and theorresponding constraints between beginnings and endintje oéspective
events. With help from Figure 7 voan read the compositidable asfollows: If X meetsY
and Y isafter Z then XsurvivesZ; or: If X overlapsY and Y isoverlapped byZ then X is a

contemporanof Z, etc.
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ICON LABEL MNEMONIC ALLEN CONSTRAINTS

) <m o fi disi

' =sdfoimi> NON€
& ol older <mo fidi a<A
$ hh head to head with si=s a=A
i;' yo younger d f oi mi > a>A
é sb survived by <mosd w<Q
? tt tail to tail with fi = f w=Q
i’ sV survives disioimi> w>Q
(zi pr precedes <m w<A
* bd born before death of <mofidisi 4.q

=sdf oi
¢ ct contemporary of 1? :)Ii disi=sd ;g w>a
’ db died after birth of 1? f! dI.SI =sd w>A
oi mi >

(J') sd succeeds mi > a=Q
f%u ob older & survived by <mo a<A w<Q
¢ oc older contemporary of o fi di a<A w>A
(# sc surviving contemporary of di si oi a<Q, w>Q
¢ bc survived by contemporaryof osd W>A 0w<Q
¢) yC younger contemporary of d f oi a>A a<Q
# ys younger & survives oi mi > a>A w>Q

Figure 7: Neighborhoods, their icons, labels, mnemonics, correspondences, and constraints.
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4.1 Coarse reasoning based on neighborhoods

We have seethat the inferences that can é&@wn fromthe compositiortable may be
coarser than the initial conditions. We may have several reasons for stating the initial conditions
for temporal inferences in coarser terms:

1) uncertainty may exist as twohich initial condition in terms of the thirteen mutually
exclusive relations holds;
2) the initial conditions may be stateddoarser terms corresponding to knowledgating

beginnings and/or endings of events (compare examples in section 2.1);

3) we want to us¢he conclusions from one inference stepimaiial conditions for further
inference steps.
Coarser knowledgean always be expressed in terms of disjunctions of fikeowledge,
inferences can be drawn on the basis of the finer knowledge, and conclusions can be derived by
forming conjunctions of these inferences on a case bybeess. Howeverthis approach is
comparable to deriving general algebraic relationskipsn specific numerical instances.
Rather than solving problems time finestlevel of resolution we wouldike to solvethem on

the coarsest possible level.

In order to do this, we use astial conditions neighborhoods of relations corresponding
to disjunctions of fine relations whiatan befound as conclusions ithe compositiortable.
We select theneighborhoods in such a walgat finerinitial conditions can bexpressed in
terms of conjunctions of coarsiitial conditions, if necessary. This step corresponds to
aggregating neighboring Allen-relations. Initially, we do not aggregat®, mi, >, since
these relations do not have enougtighbors to form conjunctions for refinemerithe ten
relations and neighborhoodepicted inFigure 8 were selected. An interesting question is,
how much knowledge abouhe correspondingemporal domain can be recoveredm the

coarse representation (compare ‘coarse coding’ in distributed representations, e.g.[13]).
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EETTETEEE

oc hh yc bc tt sc

Figure 8: Ten relations and neighborhoods used as initial conditions for coarse reasoning.

We now form acompositiontable whose cell values consist ofhe disjunctions ofall com-
binations of compositions d@ghe constituent relations of theitial neighborhoods (Figure 9).
Not surprisingly, we obtain similar patterns as in the case of fine reasoning. Duéait that
we did not have any abrupt jumps between neighbopetterns, we only fincconnected
neighborhoodsagain; due to thdact that in manycases neighboring patterns weseb-

neighborhoods or super-neighborhoodseath other, we donot get manynew patterns.
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The aggregated tabkhown in Figure $ermits us to dawo things: coarse reasoning
and finereasoning. Focoarsereasoning, wesimply look upthe neighborhood of possible
relations in the table. For example, if we know that X isldar contemporary ofoc) Y and
Y is ayounger contemporary @f/c) Z, we can infethat X is acontemporary ofct) Z or if
instead Y ishead to headvith (hh) Z then X is also awlder contemporary ofoc) Z (see
Figure 10). So, the conclusions dot necessarily beconmarser wheithe initial conditions

become coarser.

KocYvye Z-——>Rctl X oc Y hh Z -—> K oc Z
beo — | | bew — &

Figure 10: Two instances of the coarse composition relation (denoted by

4.2 Fine reasoning based on neighborhoods

For fine reasoning, we fornthe conjunctions of the inferences we @raw by coarse
reasoning. By algebraic considerations we obtain at #asine relations whiclare obtained
by fine reasoning. For example (see Figure 11), the fine relatfo¥f ¥orresponds tthe two
coarse relations X¥c Y and Xtt Y; the fine relation Yo Z corresponds tthe two coarse
relations Yoc Z and Ybc Z. So, if Xf Y and Yo Z hold, then thecorresponding coarse
relations also hold and so dwe conclusions which weandraw fromthe interactions of the
coarse relations. These interactigiedd theneighborhood?, bd, db, bc; the intersection

of these neighborhoodslis.

The result is identical to the result we get by fine reasoning. In fact, we dieatorrect
optimal result in all cases. This is not due tahe algebraic properties of the operations

performed but due to the independence of constraints betweearigtorhoodshat are being
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combined. For examplggc corresponds tthe constraintsx > A, a < Qandtt corresponds
to the independent constrainb = Qwhich combined vyield theconstraints a > A and
w = Q,which are the conditiondor the relationf (compare Figurel). The constraint

a < Qfollows fromw = Qand the domain-inherent constraint w.

AfY ol
¢®¢
Ko(yea tt) ¥ (bcaoc) Z

(¢¢ A

(KycYbcZ) a (KycYocZ) A (KttYbcZ) A (KttYocZ)

Gt od 1 dob « dod

bd A ? A bc A db
lb A 4] A ér] A (r
bc

i

Figure 11: Elaborate fine reasoning by intersecting results from coarse reasoning.

In the same manner it possible tocombine fine knowledg@.e., completeknowledge
about the relation betwedwo events) and coarse knowledfjeere: knowledge about the

relation between semi-intervals), in this inference scheme.
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5 Inferential power and computational complexity

In this chapter, we firstompare the inferentiglower of neighborhood-basdemporal
reasoning withthat of Allen’sapproach and proposeiteria for selecting appropriate compo-
sition tables. Then wediscussthe subalgebrdor neighborhood-based reasoning apply

complexity-theoretical results to this subalgebra.

5.1 Inferential power of neighborhood-based reasoning

If we consider the neighborhood-based compositbie depicted ifrigure 6, weeasily
can sedhat it hasall the inferencing capabilities of Allen’s originahble: therepresented
knowledge in both tables igentical; only the arrangementiffers. The new arrangement
together withthe monotonicity properties described in chapter 4 yields additi@aeoning
capabilities: the table can hesed forinterpolation betweerknown conclusionsand for

predicting conclusions in the case of uncertain initial conditions.

What happens withthe inferentialpower when we condengbe compositiortable for
coarse reasoning (Figure 9)? First of all, all inferences that can be drawn with fdldea’still
can be drawn and yield identical resultdowever,inferences based dhe fine relationsised
by Allen can becomeomputationally more expensive: in 81 %9 possible inferences, a

simple table look-up is replaced by a conjunction of four table look-ups.

Reasoning withthe condensed table, however, deeaperwhen coarser knowledge is
involved. The computational pay-off is best when the processed knowledge grains agee in
and shape witlthe neighborhoods representedthie compositiontable. Thisminimizes the
number of conclusions to be computed and combined by disjunctions and/or conjunctions. For
example, forthe central part of theondensed compositiaiable (granularity 3), aninference
from two neighborhoodriplets involves a singldable look-up instead of forming the

disjunction of nine individual look-ups, as with Allen’s table.
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Thus, the condensedable shifts computational effort and yields additional inferencing
capabilities. For processindine knowledge,Allen’s compositiontable isadvantageous, for
processing coarser knowledgihe condensedtable works more efficiently. In general,
knowledge processing becomemre efficientwhen itcan be shifted to &oarserlevel of
processing: one coarse infererwan do thework of nine fineinferences, undefavorable

conditions.

There argwo ways ofcombining temporal inferences: 1) propagating infekedwl-
edge along an inference chain by the composition operation; kiendedge tends tbecome
coarser — by a factor &.4 per operation, irthe average; 2) combiningnowledge from
multiple evidence sources by forming the logical conjunction; here knowledge tdrettoe
finer by the samerder of magnitude — precise values dependhenspecific datanvolved.
Depending on the granularity of the inference tabed, the sequence of propagating
knowledge from a single source or combining knowledge from multiple socawese adapted

in order to optimize the knowledge granularity for the given table.

Depending on the aspects to be optimized in a given application, we can conceive of a
variety of different inference tables from @mpact tablerequiring disjunctions and/or
conjunctions of inferences to an elaborate table representing the closed set of relations generated
by the composition of the 13 finelations. Thidable consists of 29*2%ntries (the 13 fine
relationsplus the relationsshown in Figure 7exceptpr andsd, which do not occur in the
inference tablesliscussed so far).The resultingtable is closed under neighborhood-based
reasoning and does naetquire disjoining or conjoining neighborhoodsr knowledge

propagation. The table is shown in Figure 12.

Next page: Figure 12: 29 conv@xneighborrelations forming a closed set under composition.
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As the discussion has shown, efficiency can be improved by ‘tuning’ the infeedates,
but this is not a big issue — at least not in the simple domain of temporal reasoning; the factor of
improvement is unlikely to exceed fyr typical applications. A more substantial result con-
cernsthe complexity of computing the closui@ neighborhood-based reasoning. Tiuigic

will be addressed in the following section.

5.2 Neighborhoods and convex relations

Allen’s polynomial time algorithm for temporalreasoning never infergvalid conse-
guences from a set afssertionshut it does noguarantee thall the inferences thdbllow
from the assertionsare generated;thus the algorithm is incompleteVilain and Kautz have
shown that computing the closure in the full interval algebra is an NP-complete problem (which

only can be solved in exponential time) [20, 21].

Vilain, Kautz, and van Beek [21] and Nokel [19] discuss a subsali@f's full interval
algebrawhich has aractableclosure algorithmj.e., closure can be computed in polynomial
time. This subset idefined by a property of semi-interval relations whidlain et al. call
‘continuous endpoint uncertainty’. Continuous endpoimtertainty is a convexity property
and meanshatfor any twointerval endpoints belonging to a common semi-interval relation,

intermediate end points belong to the relation as well.

Vilain et al. define continuous endpoint uncertaidy the relation betweetime points.
They apply this definition téhe relation between intervals lepnsidering individual relations
between théeginnings and endings of two intervals. By this metlizglcontinuous uncer-
tainty property generatethe set of ‘convex interval relationfl9] on the structure defined by
the A-neighborrelation in sectior8.2 (Figure 4). 808 athe 8191 possiblanterval relations
form A-neighborhoodg(i.e. neighborhoodsinder the A-neighbor structure). 82 ofthese
neighborhoodsre convex relations ithis structure and fornthe tractable algebrdiscussed

above. The closed set of 28eighborhoodgenerated by the 13 fine interval relatiansder
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composition, in turn, forms a subalgebralw algebra of convex relationshus it istractable

as well.

When continuous endpoint uncertainty applied simultaneously tpairs of relations
between beginnings and endings of two intervals, different neighborhood structures evolve:
obtain theB- and C-neighbor relations depicted ifFigure 4. Additional relations become
neighbors(o =, oi =, d =, anddi =); they were onlyindirect neighbors undethe A-
neighborrelation (via a chain of two direct neighbor links). The pairs of relasieasf =, si

=, fi = are not neighbors in tH& andC-neighborrelations.

There are769 B-neighborhoodsand 529C-neighborhoods 1255 neighborhoods are
obtained by combining the thréges of neighbor relations. Sometbé 29 convex relations
forming a closed set under compositiare notB- or C-neighbors(hh and tt). For the
disjunction of theA-, B-,andC-neighborrelations, thestrict convexity property disappears for
the closed set of 28eighborhoods: for examplthe conceptuaheighborhoodo s dis not

convex without the relatioa under the disjunction @&-, B-andC-neighborrelations.

Nevertheless, thB- andC-neighborrelations andheir combination witithe A-neighbor
relation areuseful for neighborhood-based reasonirgcall that the monotonicitproperties
described in chapter 4 hofdr all threeneighborhood relations aridus may beused for the

interpretation of the conclusions drawn on the basis of the neighborhood subalgebra.

In summary, real-world constraints temporal events and their interrelationships have

allowed us to condense tempoitalowledge by removing redundancies; as a side-effect,

temporal reasoning becomes more efficient. The structure obtaitleid process turns out to
be an interestingubset ofthe full interval algebra: 1) it is a natusibsetgenerated by the
composition operation as the closure of the basic temporal relations;c@ydasponds to an

important class of physical situations; and 3) tamputationally tractable. In tHellowing

we
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chapter, we will discuss additional regularities of temporal relationships which may amplify our

understanding of temporal structures.

6 Compacting the knowledge base

The smoothness othe transitions between neighborhoods allowed usaggregate
temporal relationgor neighborhood-based reasoning. &jgregating relationshe composi-
tion table shrank from 13*13 = 169 to 10*10 = 100 entries (Figure 9). Asilvshow in the
present chapter, ware able tdurther simplify theknowledge base underlyintpe reasoning

scheme.

In the example given in sectigh2 we showed hovine knowledgecan be obtained by
combining intersecting pieces of coaks®wledge. The final conclusion we obtained in the
inference process was already present indetil inone of thefour inferences we combined,
namely in the inferencdrawn from Xtt Y and Ybc Z. Do we always have to form the
conjunction ofall possible inferences frorie intersecting initiaheighborhoods oran we

systematically simplify the procedure?

Inspection of the inferences basedtb@condensed compositidable (Figure 9)shows
that in no case more thawo sub-inferencesontributetowardsthe solution ofthe full infe-
rence. In fact, only 54 of the 1@btries of the table yieldseful constraints fothe reasoning

procedure. These entries are depicted in Figure 13.
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6.1 Symmetry and redundancy

There is quite a bit of symmetry in theighborhood-based composititable which can
be exploitedfor matrix simplification. Mostobvious isthe symmetry between the top and
bottom halfs of theable: iffor bothinitial conditions A and B (compare Figui8) the icons
are flipped vertically, the table entries are flipped vertically. €hrsesponds tthe symmetry

between<' and ' when comparing semi-intervals.

After compaction of the tabldue to this symmetrythe columnscorresponding to the
neighborhoodbc, tt, sc are not needed and can be eliminated.addition, the first two
columns can be merged. This corresponds to forming a neighborhood of the relatias .
Figure 14 shows the table compacted to 25 entriesth®©rghthand and bottorsides of the

table the initial conditions for the entries to be vertically flipped are shown.

QB Qg
E
E

>

e (oo O

e e s S =

08
00w
L A
PO Q g
999

£ - 3 O O

>3- - £ -0 0

PP REe o

Figure 14: Transitivity table compacted to 25 entries.
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Further symmetries and other regularities allihve elimination of allbut seventable
entries: The entries in thepper right hand corner dhe tableshown in Figure 14an be
mapped into thdéower left half of the table byexchanging the x- ang-axes ofthe initial
conditions and by flipping theorresponding entries horizontally. This transformation yields

layers Il - ii of initial conditions (Figure 15).

The entries in the lower right hand corner of the table in Figure 14 can be mapped into the
upper left half of the table by inverting the x- and y-axes of the initial conditions and flipping the
table entries both vertically and horizontally (or equivalently, by rotating the@B80ydegrees).

This transformation yields layers 11l - iii and IV - iv.

Furthermore, we find fouidentical entries in theipperleft hand corner ofthe table.
They can be mapped into a single entry by adding layers V - v, W/l and VIl - vii, each

containing one singleton of initial conditions.

Finally, the table can be simplified iarder to minimize transformations orthe table

entries; this is done by rotating the remaining entries by 180 degrees.

Figure 15 shows the compressed table consisting of seven entriesanéhmtcessible by
2*7 layers ofinitial conditions. Two ofthe entry patterns arielentical (yo). The initial
conditions ineach layer are mutuallgxclusive. Neighboringinitial conditions always
correspond to neighboring neighborhoods, in each layer. Only pairs of conditions belonging to
the same layer (I-VII or i-vii) have to hesed for accessintpe entries. Entries derived from
layers marked with &ertical double arrowhave to be flipped vertically, entries derived from
layers marked with a horizontal doula@erow have to be flipped horizontally, entries derived

from layers marked with both arrows have to be flipped in both directions.
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6.2 Reasoning based on the compressed composition table

The compressed compositidablerepresents vergeneral regularitiesorresponding to
the symmetries involved in the relations betwaeighborhoods.Only thefirst 2*4 layers of
initial conditions (I - IV and i - iv) actually define the structure of the table; the ati®layers

(V - Vll and v - vii) all refer to the same single entry in the table.

In order to use this table feemporalreasoning, neighborhoods e¥ent relations and/or
individual event relations are matchetth the correspondingnitial conditions forthe table as
in the previous composition tables.Then the conjunction of theorresponding entries is
formed. The entries corresponding to the initial conditions marked with arrows must be flipped

as suggested by the arrow before the conjunction is formed.

Flipping the entry patterngorresponds to a vergimple re-labeling ofrelations.
Specifically, horizontal flipping correspondseérchanging the labelB ands, di andd, si

andf; vertical flipping corresponds to exchanging the lakedsd>, m andmi, o andoi, fi

T il

T X
NEEEEE.
Tle e oo

Figure 16: The effect of horizontal and vertical flipping of the 6 distinct entridgsecfompres-
sed composition table. Blank entries indicate that the transforntet®noeffect and is there-
fore not required.
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andsi, s andf; flipping both dimensions correspondsetachanging the labels and>, m

andmi, o andoi, fi andf, di andd, si ands (compare Figure 16).

6.3 Examples for reasoning with the compressed composition table

1) Fine reasoning. Suppose, X isstarted byY and Y finishesZ. What is the
relationship between X and Z? We check the layeraioél conditions for pairs A, B
corresponding tehe pairsi, f. We obtainfour matches: a) layer I: bottom right entry; b)
layer i: center entry; c) layer ii: top right entry; d) layer Ill: center entry. a) and c) correspond
to non-contributing entries;thus, weonly have to consider b) ard). Both sets ofinitial
conditions point to the center entry of the table corresponding to rejatiomhe table indicates
that entries associatesth layer i have to be flipped horizontally; therefore we form the
conjunction ofyc and its horizontally flipped imagee. We obtairoi. Thus, X isoverlapped

by Z is the final conclusion.

2) Coarse reasoning. Suppose, Xysanger contemporary &f and Y ishead to head
with Z. Layerlll containsthe matching pair of initiatonditions which point tdhe relation
younger Layer Ill does not indicatihat flipping is required; thus X isyoungerthan Z is the

final conclusion.

3) Combining fine and coardenowledge. Suppose, KeetsY and Y is ayounger
contemporaryof Z. How are X and Z temporallyelated? We check thiayers of initial
conditions for pairs A, B of initial conditions corresponding to the pgiryc. We obtain two
matches: top right entry for layer | and center efdarylayerll. The top right entry is aon-
contributing entry, so we only have to consitlex center entry of theblewhich corresponds
to the neighborhoogc. The table indicates that the entries obtained through layer Il have to be
vertically flipped; this yieldsthe relationbc. Thus, X is asurvived bycontemporaryof Z

(compare Figure 17).
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INITIAL X meetsy

CONDITIONS X mY yc Z Y is ayounger contemporary &

COMPOSITION

RELATION @

MATCHING

LAYERS I I1

TABLE

ENTRY (none| ¢] yc

FLIPPING l

OPERATION

CONJUNCTION ér]

RESULT X is asurvived by
¢] X bc Z contemporaryf Z

Figure 17: The reasoning steps involved in reasoning with the compressed composition table.
The example shows how fine and coarse knowledge can be combined.

7 Conclusions

We have modified Allen’s approach to interval-based representation of temporal relations
in such a waythat it can beusedrather naturallyfor reasoning withncompleteknowledge,
specifically with coarse knowledge about temporal relationshipst approactaddsflexibility
and appears to be cognitively more adequate. It is based on a neighborhood-oriented view of
events: events are not treated as isolated entitegber,they are viewed as conceptut@ms
which are embedded in metwork ofrelatedevents. In thissiew, the notion of ‘conceptual

neighborhood’ becomes essential.



Freksa Temporal Reasoning Based on Semi-Intervals 40

Conceptual neighborhood plays an important role in cognitdany cognitivefunctions
rely on the assumptiatiat theworld they are dealingvith is continuous or quasi-continuous,
i.e., changes happen in stepather than injumps. Forthe specific domain of temporal

relations we have shown that this assumption is justified.

The concept oheighborhood is a prerequisifer our concept of coars&nowledge.
Coarse knowledge allows for short-cuts in reasoninthérfollowing way. Allen’s original
reasoning strategy conceptually contains four levels of knowledge: 1) problem level in terms of
coarse knowledge; 2) initial conditions expressed in terms of fine knowledge; 3) constraints on
the composition relation corresponding to coarse knowledge; 4) conclusion exprassat in
of fine knowledge. Level 1) ispresent only ifthe problem is initiallygiven in coarse terms;
level 4) is present only if the result is stated in fine terms. In our approacherge levels 1)

to 3) by reasoning directly on the coarse level.

| would like to suggestthat this short-cut is just one instance of neighborhood-based
problem reduction and that the general idea can be applied in various domains of cognition. For
example, in natural languagepresentation, concepse frequently represented in fine terms;
as a consequencsemantical ambiguities demand a multiplicatiorpadcessing effort. If the
concepts were represented on a higher concepttell some othe ambiguitiesvould never
arise and consequentiyould nothave to baesolved. Another domain is theoremproving?
where it is desirable to identify coarser concepkt®se conceptual instantshareimportant

properties.

The neighborhood-based inference strategy described iarticie hasbeen implemented
and compared with with Allen’s strated¥7], but a large scale performance analysis under
various conditions has nget beendone. Weview the neighborhood structures described as

basic generic structures for the construction of very small sequesatsainers and aégularly

2 this suggestion is due to Steffen Hdlldobler.
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structuredparallel reasoners. For aequentialreasoner,the compressed compositictable

would besequentially accessed by the layers matchingnitial conditions before the entries

are flipped and conjoined. For a parallel reasoner, several copiestablecould be accessed
simultaneously; the entry-flipping could lvéred-in directly. Also,the simple and regular
structure of the neighborhood reasoning structure (Figure 9) appears to make implementation by

means of an associative memory appropriate.

The presented approach can be extended&aitious directions. The neighborhood
concept can beised for reasoning under uncertaintyncertainty or incomplet&nowledge
correspond to a neighborhood of possibilitmsmpared to a single possibility within this
neighborhood in the case of certainty or complete knowledge. This view is in contrast to a view
in which uncertainty orincomplete knowledge correspond to disjunctions ohrelated
possibilities. If coarse knowledge becomes coarser dueziziness,the samereasoning
principles can be applied to coarkerowledge which we havepplied to fine knowledge;

although full recovery of fine knowledge will no longer be guaranteed.

An obvious extension dhe approach ifor reasoning withl-dimensional space which
sharesmany properties with time. Extensiofts reasoningabout 2- or 3-dimensional space
are more challenging (compafé]), but a coarse reasoning approach appears tbetier
tractable than a fine reasoning approach. We expatthe large amount of regulari@yd the
conceptual simplicity of the system will proof helpful for developing representation schemes for

more-dimensional spaces.
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