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ABSTRACT   
Several important time series data mining problems reduce to the 
core task of finding approximately repeated subsequences in a 
longer time series. In an earlier work, we formalized the idea of 
approximately repeated subsequences by introducing the notion 
of time series motifs. Two limitations of this work were the poor 
scalability of the motif discovery algorithm, and the inability to 
discover motifs in the presence of noise.  
Here we address these limitations by introducing a novel 
algorithm inspired by recent advances in the problem of pattern 
discovery in biosequences. Our algorithm is probabilistic in 
nature, but as we show empirically and theoretically, it can find 
time series motifs with very high probability even in the presence 
of noise or “don’t care” symbols. Not only is the algorithm fast, 
but it is an anytime algorithm, producing likely candidate motifs 
almost immediately, and gradually improving the quality of 
results over time.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications - Data 
Mining 

Keywords 
Time Series, Data Mining, Motifs, Randomized Algorithms. 

1. INTRODUCTION 
Several important time series data mining problems reduce to the 
core task of finding approximately repeated subsequences in a 
longer time series. In an earlier work, we formalized the idea of 
approximately repeated subsequences by introducing the notion of 
time series motifs [26]. We will define motifs more formally later 
in this work. In the meantime a simple graphic example will serve 
to develop the reader’s intuition.  Figure 1 illustrates an example 
of a motif discovered in a complex dataset.  

Examples of algorithms that utilize motifs (typically under 
different names and with variants of definitions) include the 
following: 

• Mining association rules in time series requires the discovery 
of motifs. These are referred to as primitive shapes in [7] and 
frequent patterns in [18].  

• Several time series classification algorithms work by 
constructing typical prototypes of each class [22, 15]. These 
prototypes may be considered motifs.  

• Many time series anomaly/interestingness detection 
algorithms essentially consist of modeling normal behavior 
with a set of typical shapes (which we see as motifs), and 
detecting future patterns that are dissimilar to all typical 
shapes   [8]. 

• In robotics, Oates et al. [27], have introduced a method to 
allow an autonomous agent to generalize from a set of 
qualitatively different experiences gleaned from sensors. We 
see these “experiences” as motifs. 

• Much of the work on finding approximate periodic patterns 
in time series can viewed as an attempt to discover motifs 
that occur at constrained intervals [14]. For example, the 
astute reader may have noticed that the motif in Figure 1 
appears at approximately equal intervals, suggesting an 
unexpected regularity.  

In addition to the application domains mentioned above, motif 
discovery can be very useful in its own right as an exploratory 
tool to allow hypothesis generation [11].   
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Figure 1: Above) An example of a motif that occurs three times in 
a complex and noisy industrial dataset. Below) a zoom-in reveals 
just how similar the three occurrences are to each other 

There exists a vast body of work on efficiently locating known 
patterns in time series [1, 6, 12, 23, 35, 36, 37]. Here, however, 
we must be able to discover motifs without any prior knowledge 
about the regularities of the data under study.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA 

Copyright 2003 ACM 1-58113-737-0/03/0008…$5.00.  

The obvious, nested-loop, brute force approach to motif discovery 
would require a number of comparisons quadratic in the length of 
the database. Optimizations based on the triangular inequality can 
mitigate the time complexity by a large constant factor [26], but 
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this approach is still untenable for large and massive datasets. All 
the works listed above introduce methods to discover some form 
of motifs, but the definitions are application specific, scalability is 
not addressed, and more importantly they completely disregard 
the problem of noise.  

The importance of noise when attempting to discover motifs 
cannot be overstated. Consider the two sequences shown in Figure 
2. While they are extremely similar, one of them has a downward 
spike at time 38.   

 

Figure 2: Two subsequences from an industrial dataset. Although 
they appear to very similar, the noisy downward spike at time 
period 38 in one of the sequences will make it difficult for 
algorithms to discover this potential motif 

One could assume that one outlier in a sequence of length 100 
data points would not make much difference. However even small 
amounts of noise can dominate distance measures, including the 
most commonly used data mining distance measures, such as the 
Euclidean distance [6, 7, 8, 21, 36]. Figure 3 shows that the spike 
can cause one of our candidate motifs to appear to be much more 
similar to an artificial sequence which just happens to have spike 
in the same place. 

 

Figure 3: Left) The two sequences from Figure 2 clustered 
together with a synthetic sequence, using Euclidean distance. The 
synthetic sequence does not particularly resemble the two real 
sequences, but happens to have noise in the same place as 
sequence 2. This dendrogram demonstrates that a single piece of 
noise can dominate a distance function. Right) If we allow the 
distance function to have “don’t care” sections (denoted by the 
gray bar), more intuitive results can be obtained 

There is still hope for us if we wish to mine noisy datasets. Figure 
3 also shows that allowing small don’t care subsections (that is, 
sections which are ignored by the distance function), allows much 
more intuitive results to be obtained. We note that the utility of 
allowing don’t care sections in time series has been documented 
before [1, 22], and it is a cornerstone of text and Biosequences 
data mining [3, 24, 25, 28, 30, 34]. 
The previous example illustrates the dangers of mining in the 
presence of noise. Indeed, this single spike might be best taken 
care of with a simple smoothing algorithm. More generally, 
however, we may have a potential motif if we are willing to 
overlook the fact that a small valley in one sequence is mirrored 

by a small peak in another, otherwise similar, sequence. 
Robustness to such situations is non-trivial [1]. 

Our contributions in this paper are twofold. We generalize the 
definition of time series motifs to allow for don’t-care 
subsections, and we introduce a novel time- and space-efficient 
algorithm to discover motifs. Our method is based on a recent 
algorithm for pattern discovery in DNA sequences [34]. The 
intuition behind the algorithm is to project the data objects (in our 
case, time series), onto lower dimensional subspaces, based on a 
randomly chosen subset of the objects features. The lower 
dimensional space can be quickly post-processed to discover 
likely candidates for motifs, while the candidates can be quickly 
checked against the original data.      

0 20 40 60 80 100 

W inding Dataset 
(Tension in the web between reel 2 and 3) 

The rest of this paper is organized as follows. In Section 2 we 
formally define the time series motif problem. In Section 3 we 
briefly review related work in time series data mining, and in 
bioinformatics. Section 4 sees an extensive review of the work of 
Buhler and Tompa [34], upon which our algorithm is based. The 
section that gives a detailed explanation of our algorithm is 
omitted from this “poster” version of the paper. We urge the 
reader to consult the full version of the paper which is available 
from the second authors web page. In Section 5 we provide the 
results of a comprehensive experimental evaluation.  

2. DEFINITIONS AND NOTATION    
We made some initial progress in defining time series motifs in a 
previous paper [26], here we generalize the definition to allow for 
matching under the presence of noise, and to eliminate a special, 
degenerate case of a motif.  
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For concreteness, we begin with a definition of our data type of 
interest, time series: 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Time series can be very long, sometimes containing trillions of 
observations [12, 32]. We are typically not interested in any of the 
global properties of a time series; rather, we are interested in 
subsections of the time series, which are called subsequences.   

Definition 2. Subsequence: Given a time series T of length m, 
a subsequence C of T is a sampling of length n≤m of 
contiguous position from T, that is, C = tp,…,tp+n-1 for  1≤ p ≤ 
m – n + 1. 

Since all subsequences may be a potential motif, any motif 
discovery algorithm will eventually have to extract all of them, 
this can be achieved by use of a sliding window [7, 23, 36]. 

Definition 3. Sliding Window: Given a time series T of length 
m, and a user-defined subsequence length of n, a matrix S of 
all possible subsequences can be built by sliding a window of 
size n across T and placing subsequence Cp  in the pth  row of 
S. The size of matrix S is (m – n + 1) by n. 

A task commonly associated with subsequences is to determine if 
a given subsequence is similar to other subsequences under some 
distance measure D(C,M) [21]. This idea is formalized in the 
definition of a match. 

Definition 4. Match: Given a positive real number R (called 
range) and a time series T containing a subsequence C 
beginning at position p and a subsequence M beginning at q, 
if D(C, M) ≤ R, then M is called a matching subsequence of C. 

493494



Definition 7. K-Motif(n,R,d): The Kth most d-significant motif 
in T (hereafter called the K-Motif(n,R,d)) is the subsequence 
CK that has the highest count of non-trivial matches, and 
satisfies D(CK, Ci) > 2R where d (possibly non-contiguous) 
datapoints can be ignored while calculating the distance 
between CK, Ci, for all  1 ≤  i < K. In general we have d < n, 
and typically d << n. 

The first three definitions are summarized in Figure 4, illustrating 
a time series of length 1,000, and two subsequences of length 128. 

  
0 100 200 300 400 500 600 700 800 900 1000

T M 

C Space Shuttle STS-57 Telemetry 
(Inertial Sensor) Deciding which d datapoints to ignore is easy. Since we want to 

minimize the calculated distance, we can sort the indices i in 
increasing order of |Ci –Mi|, and ignore the first d. 

Figure 4: A visual intuition of a time series T (light line), a 
subsequence C (bold line) and a subsequence M that is a match to 
C (C is overlaid as a bold gray line) 

We note that this definition has a close analogue in classic motif 
discovery in biosequences [28, 34]. In the bioinformatics 
community, the (w,d)-motif problem is to discover a reoccurring 
sequence of length w, where each occurrence may differ in d 
positions. Note that in the discrete case, there is no R parameter, 
since it is implicit the use of Hamming distance. 

Whereas the definition of a match is rather obvious and intuitive, 
we also need for the definition of a trivial match. One can observe 
that the best matches to a subsequence (apart from itself) tend to 
be located one or two points to the left or the right of the 
subsequence in question. Figure 5 shows the situation. There is one final consideration we must address if we wish to 

have a meaningful definition of motif. The problem is best 
illustrated with a visual example.  
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T 

Space Shuttle STS-57 Telemetry 
(Inertial Sensor) 
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Figure 6: Left) Three subsequences of length 16 that can be 
modeled well by a straight line. Right) After normalization, all 
such subsequences become virtually indistinguishable 
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Figure 5: For almost any subsequence C in a time series, the best 
matches are the trivial subsequences immediately to the left and 
right of C 

Intuitively, any definition of motif should exclude the possibility 
of over-counting these trivial matches, which we define more 
concretely below.      Figure 6 shows that the subsequences that can be well-

approximated by a straight line with a positive slope will look 
almost identical after normalization. Since almost all time series 
can be modeled well by piecewise linear functions if the 
subsequences are short enough [12, 22], then the most common 
motifs will likely correspond to an upward trend or a downward 
trend of arbitrary angles. These “degenerate motifs” are unlikely 
to be of interest to anyone, and in any case, are trivial to 
enumerate with a simple algorithm [19]. We will therefore 
exclude them from further consideration. This can easily be 
achieved at the feature extraction stage, when using sliding 
windows to extract the subsequences. As the window is moved 
across the time series, the subsequences “straightness” can be 
measured by doing a least squares linear fit, and recording the 
residual error [21, 23]. Only those subsequences that have a 
residual error greater that some epsilon are extracted and passed 
to the motif discovery algorithm. With a careful implementation 
that reuses partial results from the previous windows, this can be 
achieved in amortized constant time per subsequence.     

Definition 5. Trivial Match: Given a time series T, containing 
a subsequence C beginning at position p and a matching 
subsequence M beginning at q, we say that M is a trivial 
match to C if either p = q or there does not exist a 
subsequence M’ beginning at q’ such that D(C, M’) > R, and 
either q < q’< p or p < q’< q. 

Each time series is normalized to have mean zero and a standard 
deviation of one before calling the distance function, because it is 
well understood that it is meaningless to compare time series with 
different offsets and amplitudes [6, 21, 35, 36]. 
We can now define the problem of enumerating the K most 
significant motifs in a time series.  

Definition 6. K-Motif(n,R):  Given a time series T, a 
subsequence length n and a range R, the most significant 
motif in T (hereafter called the 1-Motif(n,R)) is the 
subsequence C1 that has highest count of non-trivial matches 
(ties are broken by choosing the motif whose matches have 
the lower variance). The Kth most significant motif in T 
(hereafter called the K-Motif(n,R) ) is the subsequence CK that 
has the highest count of non-trivial matches, and satisfies 
D(CK, Ci) > 2R, for all  1 ≤  i < K. 

3. RELATED WORK  
In order to frame our contribution in its proper context we will 
briefly consider related work. 

Note that this definition forces the set of subsequences in each 
motif to be mutually exclusive. This is important because 
otherwise two motifs might share the majority of their elements, 
and thus be essentially the same. To gain more intuition for these 
definitions, Figure 1 shows the 1-Motif(128,4) discovered in the 
Winding dataset. 

To date the majority of work in time series data mining has 
focused indexing time series, the efficient discovery of known 
patterns in time series [1, 6, 12, 21, 22, 23, 31, 35, 36, 37].  

The innovative work of Oates et al. considers the problem of 
learning “qualitatively different experiences” (which we see as 
motifs), but the authors are working with relatively small datasets, 
and thus did not address scalability issues [27].  

Definition 6 does not allow for don’t care subsections [1], but it 
can easily extended. 
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Pattern discovery algorithms for biosequences have recently 
received increased attention from researchers, in particular after 
the challenge by Pevzner and Sze [28] (see below). We mention, 
in no particular order and without pretending to be exhaustive, 
TEIRESIAS [30], GIBBSSAMPLER [24],  MEME [3], WINNOWER [28], 
VERBUMCULUS [2], PROJECTION [34], among others. 

Of particular interest is the PROJECTION algorithm by Buhler and 
Tompa [34]. They applied random projection in their paper to find 
motif in nucleotide sequences. The most important contribution 
was in formulating the number of random trials to run in order to 
achieve some specific bucket richness. Since this work is the 
cornerstone of our contribution, we will discuss the contribution 
of Buhler and Tompa in more detail in the next section. 

4. MOTIF DISCOVERY AND THE 
RANDOM PROJECTION ALGORITHM  
The projection algorithm by Buhler and Tompa was designed to 
attack the planted (w,d)-motif problem, which was proposed by 
Pevzner and Sze [28]. 

Planted (w,d)-motif problem. You are given t strings of 
length n, initially generated at random (i.e., each symbol 
generated i.i.d. with the equal probability). Each string is 
planted with exactly one approximate occurrence of an 
unknown motif y of length w, that is, an occurrence with 
exactly d substitutions. Find the unknown motif y. 

The initial challenge by Pevzner and Sze was to solve the (15,4)-
motif problem on t=20 sequences of n=600 symbols over the 
DNA alphabet (i.e., 4Σ = ). This problem turned out to be 
extremely hard to solve for commonly used pattern discovery 
algorithms. We need a few definitions to explain why. 

Definition 8. Given two strings y1 and y2, |y1|=|y2|, the 
Hamming distance H(y1,y2) is given by the number of 
mismatches between y1 and y2. 

Definition 9. Given a string y, all strings at Hamming 
distance at most d from y are in its d-neighborhood. 

Observe that if you consider two approximate occurrences of the 
unknown motif y, the Hamming distance between them may be as 
large as 2d.  In fact, it very likely that we will never observe y in 
the t sequences. Figure 7 illustrates the problem from a geometric 
perspective.  

 

Figure 7: the string y is the (unknown) motif, d is the number of 
allowed mismatches, and y1,y2,y3 belongs to the d-neighborhood 
of y. The problem is to find y from y1,y2,y3 

To make the problem even more difficult, even if we were able to 
determine exactly all the yi in the d-neighborhood of y, there is no 
guarantee to find the unknown model y. Suppose w=4, d=1 and 
that we found the strings {AAAA,TATA,CACA}. The pair wise 

Hamming distance is 2 but there is no string at Hamming distance 
1 to each of these. 
The brute force strategy of building all possible substrings in the 
2d-neighboorshood of all the substrings of the sequence under 
analysis is doomed to fail. In fact, the size of the size N(m,d) of 
the d-neighborhood of a string y is 

( ) ( ) ( )
0

, 1
d j d d

j

y
N y d O y

j=

 
= Σ − ∈ Σ 

 
∑ ,  (1) 

and grows exponentially with d. 
In order to reduce the huge search space, Buhler and Tompa used 
random projection to “guess” at least some of occurrences of the 
unknown planted motif. 
Buhler and Tompa projection algorithm carries out i iterations, in 
each of which it chooses k distinct positions uniformly at random 
out the w possible. The k positions become a “mask” that is 
superimposed at all positions on the sequences under study.  Each 
substring of size w in the sequence is therefore mapped to a string 
of size k,  by reading the symbols though the mask. 
The frequency of the projected strings is collected into a hash 
table. If k is chosen such that  then it is likely that some 
of the occurrences of the planted motif will hash together in the 
same entry. Entries in the hash table whose count is higher than a 
specified threshold s are therefore selected, and they become the 
seed for a refinement process that uses expectation maximization 
(EM) [25]. 

-k w d<

Crucial factors in the success of PROJECTION are the choices of the 
projection size k, the number of iteration i, and the threshold s. 
The parameter k has to be chosen such that  k w - d<  and 

( - 1)k t n wΣ > +  in order to sample from the non-varying positions 
(first constraint) and to filter out the noise (second constraint). 
The number of iteration i can be estimated from w, t, d, k, and s.  

5. EXPERIMENTAL RESULTS 
We begin with a simple demonstration of our algorithm.  

5.1 A “Sanity Check”: Finding Planted Motifs 
As a “sanity check” we attempt to recover two planted motifs, 
each with two occurrences, from a small dataset. The two planted 
motifs are shown in Figure 8. Note that they are by no means 
identical to each other. For example, consider the AB motif. 
During time period 30 to 40, subsequence A is mostly flat with a 
single dramatic upward spike. In contrast, subsequence B is 
characterized by a relatively smooth valley in this region. In 
addition, all the subsequences are noisy along their entire length. 

2

d
y

y y

y

 
Figure 8: Two motifs which will be planted into a longer dataset 
as a simple test of our algorithm. Left) The AB motif, Right) the 
CD motif 
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We embedded the four subsequences into a random walk dataset 
of length 1128. The dataset was scaled such that the average 
standard deviation in any subsequence of length 128 was about 
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5.2 Sensitivity to Noise the standard deviation of our embedded motifs. Figure 9 
illustrates the dataset.  

The experiment in the previous section suggests that our 
algorithm is reasonably robust to noise. The planted motifs which 
were so easily recovered were actually quite noisy, as was the 
dataset into which they were imbedded. Nevertheless, it is natural 
to ask how sensitive to noise TIME SERIES PROJECTION is. 

 
Figure 9: A random walk time series with implanted motifs. The 
subsequences were randomly imbedded in the following locations 
{A, 191}, {B,  649}, {C, 351} and {D, 812} 

0 200 400 12001000800600

To answer the question we performed the following experiment. 
We took the dataset used in Section 6.1 and kept adding noise to 
it until the largest value in the collision matrix no longer 
corresponded to one of the planted motifs. We used Gaussian 
random noise, which was added to the entire length of the dataset. 
We began with noise which had a standard deviation that was a 
tiny fraction the standard deviation of the original data, and kept 
doubling the noise level until the average value of the planted 
motifs was no greater than the largest other value. Figure 11 
shows a typical amount of noise that can be tolerated by our 
algorithm. If this noise level is doubled again, the planted motif is 
not anymore the 1-motif and 2-motif (although even when the 
noise level shown is quadruped, we still typically find the planted 
motifs in the first 4 or 5 motifs reported).   

We ran our algorithm with n = 128, w = 16, a = 4 for 100 
iterations. For ease of visualization we did not perform the 
numerosity reduction step discussed in Section 5.3. Because this 
is a relatively small dataset, we can visualize the collision matrix 
as a contour plot as in Figure 10. 

 
Figure 10: The collision matrix visualized as a contour plot. Only 
values which are at least 10 times the expected value (cf. 5.4) are 
shown 
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Figure 11: Even when noise is added to the test dataset 
introduced in Section 6.1, the TIME SERIES PROJECTION 
algorithm can still discover the planted motifs. Although noise is 
added to the entire dataset, here we only show the planted AB 
motif with an amount of noise that our algorithm can handle. If 
the amount of noise is doubled again, our algorithm fails to find 
this motif as the most promising candidate in the collision matrix  
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5.3 Efficiency of TIME SERIES PROJECTION  
To test the scalability of our algorithm, we began by measuring 
the time taken for the experiment discussed in Section 6.1. We 
then repeatedly concatenated an additional 1,000 length of 
random walk data, and measured the increase in time required. 
We tested two variants of our algorithm. In the first, we ran the 
algorithm for 100 iterations. In the second, we stopped after the 
largest value in the collision matrix was at least ten times larger 
than expected by chance (as measured by Eq. 9). As a comparison 
we tested against the obvious brute force algorithm. We highly 
optimized the brute force algorithm (including removing the 
square root from the Euclidean distance function, “early 
abandonment”, triangular inequality pruning, etc [21]). In 
contrast, as TIME SERIES PROJECTION is still in the development 
stage, we did not optimize it. The results are shown in Figure 12. 

These preliminary results are extremely encouraging. The 
locations of the planted motifs are clearly seen as dark smudges. 
Note that the location of the planted motifs appears to be slightly 
“smeared” at a 45 degree angle. This is simply the result of not 
doing the numerosity reduction step, because if location (i, j) has 
strong motif, the locations (i +1, j +1) and (i -1, j -1) will have a 
slightly weaker one, etc. 

Finally, we tested the sensitivity of the algorithm to the parameter 
n,w and a. In practice, one would like to be able to recover the 
motifs without knowing the exact length of the planted motifs. 
We discovered that we could make n much shorter than 128 and 
still trivially find (a subsection) of our planted motifs. This is not 
surprising since it is very likely that a portion of a motif is also a 
motif. A more satisfying result is the fact that we could set n to be 
larger that 128 (at least 150), and still easily recover the planted 
motif. Regarding parameters w and a, we found we could vary 
them greatly and still easily recover the planted motifs. The only 
significant difference was a slight change in the efficiency of the 
algorithm.   

The results seems to confirm the theoretical analysis in Section 
5.4, brute force is quadratic, TIME SERIES PROJECTION is linear, in 
the length of the time series. Note that for every experiment, we 
compared the result of both variants of our algorithm with the 
results from brute force. In every case the top 3 motifs were the 
same.  
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Figure 12: The scalability of various motif discovery algorithms 
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