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Abstract. Large aggregation interval asymptotics are used to investigate the relation
between Granger causality in disaggregated vector autoregressions (VARs) and associated
contemporaneous correlation among innovations of the aggregated system. One of our
main contributions is that we outline various conditions under which the informational
content of error covariance matrices yields insight into the causal structure of the VAR.
Monte Carlo results suggest that our asymptotic findings are applicable even when the
aggregation interval is small, as long as the time series are not characterized by high levels
of persistence.
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1. INTRODUCTION

Temporal aggregation poses many interesting questions which have been explored
in time series analysis and which yet remain to be explored. An early example of
research in this area is Quenouille (1957), where the temporal aggregation of
ARMA processes is studied. Other important contributions include Zellner and
Montmarquette (1971), Stram and Wei (1986), Liitkepohl (1987), Weiss (1984),
and Marcellino (1999), to name but a few. The findings of these studies can be
summarized by quoting Tiao (1999):

So the causality issue is muddled once the data are aggregated. The problem is
that if the data are observed at intervals when the dynamics are not working
properly, then we may not get any kind of causality.

In this paper, we examine the impact of temporal aggregation on Granger
causal relations in vector autoregressions (VARs), by using large aggregation
interval asymptotics to investigate the relation between Granger causality in the
original variables and contemporanecous correlation among the residuals of a
temporally aggregated system. From a theoretical perspective, we outline various
conditions under which the informational content of error covariance matrices
yields insight into the underlying causal structure of the VAR. This allows us to
characterize the extent of information loss due to aggregation.

To illustrate the type of problem which we consider, assume that one is
interested in analysing a system of three aggregated variables X, Y and Z.
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Suppose that we observe contemporancous correlation between X and Y
conditional on Z. In this case, one may conclude that there is a causal
relationship between X and Y (Dawid, 1979). However, it may be the case that the
corresponding disaggregated variables x and y do not exhibit any causal
relationship, so that the contemporaneous correlation spuriously indicates
causality between the variables. Therefore, it is important to know under which
conditions contemporaneous correlation is merely due to temporal aggregation,
i.e., to quantify the risk of inferring that there is Granger causality when, in fact,
the original variables do not possess any causal linkage. In this paper, asymptotic
theory for large aggregation intervals is used to derive sufficient conditions for
ruling out spurious causality stemming from temporal aggregation.

The rest of the paper is organized as follows. In Section 2, basic concepts are
reviewed. Section 3 summarizes our asymptotic findings and Section 4 contains
the results from a small Monte Carlo investigation. Section 5 concludes. All
proofs are gathered in the Appendix.

2. BASIC DEFINITIONS

Following Granger (1969), we consider a conditional distribution with respect to
two information sets which are available at time ¢, say Z, and Z j =7,U
{x:—s,5 =0}, where x, denotes a (possibly causal) variable. In the following, we use
a conditional mean definition of causality. Specifically, we define a variable x, to
be a Granger cause for the variable y, (or x — y) if

E(in1|Zi) # EGialZ)) (1)

Granger (1969) also gives a definition of instantaneous causality; see also Pierce
and Haugh (1977). For a multivariate system with &, = [x,,;,2!]’, where z, is a m*-
dimensional vector of time series with m* > 1, we say that instantaneous causality
x = y (or by reasons of symmetry y = x) occurs if

E(|T) # EM|T]) 2)

where 7, =7, U {z} and Tf =Z,1 U{z — x,}. This definition can be seen as a
dynamic version of the causality concept used by Dawid (1979) and Pearl (2000),
among others. For example, if & is white noise, we find that there is no
instantaneous causality between x; and y; if E(y;|z;,x;) = E(34|z;). This conditon is
satisfied if x, and y; are conditionally independent given a sufficient set of variables
z; (Dawid, 1979). Furthermore, conditional independence implies a causal
relationship that can be represented by using directed graphs; see Swanson and
Granger (1997) and Pearl (2000) for more details. As already noted by Granger
(1969), an important problem with the definitions is the choice the sampling
interval. For example, variables which are Granger causal according to (1) and
based on daily data, may not be Granger causal based on monthly data, and vice
versa. In the sequel, we examine two types of temporal aggregation; see, for
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example, Liitkepohl (1987). For a flow variable, say y, observations are
cumulated (or averaged) at k successive time periods to form

k-1
=k Z)’tfj
=0

where the factor k~'/? is introduced to obtain a limiting process with finite
variance. The aggregated series, Y7, results from applying skip-sampling (i.e.
Yr =y, for T=1,2,...), where it is assumed that the time series starts at the
beginning of the aggregation period. Stock data are aggregated by directly
applying the skip-sampling scheme to the data, so that Y; =y for
T=1,2,...

3. RESULTS

Assume that n = kN, where N and n are the sample sizes of the aggregated and
disaggregated variables. Since & — oo implies n — oo, it is not necessary to
assume that N also tends to infinity. Our findings are summarized in the following
propositions.!

Proposition 1. (Stationary Variables). Let y, be generated by an m-dimensional
linear process

Vi = Coe, + Crem1 + Corgn + - - -

where €, is white noise with E(ee)) = Q, Cy = I, and y, is one-summable such that
>0 JICj| < 00, where |Cj| = max,p [Cjum)| and Cjnm denotes the (n,m)-
element of C;. As k — oo, the processes for the aggregated vectors Yr and Yr are
such that for stock variables:

(1) limy—o E(Y7Y7) = Z;io CQC;
(i) limg—c E(Y7Y7, ;) = 0 for j>1
For flow variables we have:
(iii) limy— E(Y7Y;) = 27f,(0) ‘
(iv) limg oo k- E(Yr Y7, ) = D072 (00 G, G
(v) im0 k - E(YTY}H) =0 for j=2, where f,(w) denotes the spectral density
matrix of y, at frequency .

The result of Proposition 1 is intuitive, since it states that, as the sampling interval
increases, short-run dynamics disappear. Furthermore, for moderate &, aggregated
flow variables are well approximated by a vector MA(1) processes. The reason for
this is that, from (iv), we know that the first-order autocorrelation is O(k~!),
while (v) implies that higher-order autocorrelations are o(k™').
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Proposition 2. (Difference Stationary Variables). Let Ay, be generated by an m-
dimensional linear process

Ay =€+ Cieo1 +Cogn + -+

where it is assumed that €, is white noise with E(e;) = Q, 372, j|C;| < oo and the
matrix C = Z C; has full rank. As k — oo, the processes for the aggregated
vectors Yr and YT are such that for stock varibles.

(1) llmk_,OOkE(YT — YT 1)(YT — YT—l), = anAy(O)
(i1) hmk_,ockE(YT —Yr_ 1)(YT+j — YT—&-j—l), =0, for j=1
For ﬂow variables we have:
(iii) limy_ o0 kz E(Yr — Yr 1) (Y) — YT 1) =4 fa,(0)
(iv) limg—oe = E(Yr — Yr_1) (Y71 — Y1) =3 fa,(0)
(V) limy—oe S E(Yr — Yr—1)(Y74; — Yrij-1)" = 0 for j>2, where fy,(w) denotes
the spectral density matrix of Ay, at frequency o.

Given Proposition 2, it follows that, as & tends to infinity, the vector of aggregated
flow variables has a vector MA(1) representation. Namely,

k' (Yr = Yr) = Ur + (2= V3)Ur_ (3)
where
2n
E(UrUy) = e \/—)2fAy( ).

Note that, for the special case where m = 1 (a single time series), our results
correspond to the result of Working (1960), who shows that the first-order
autocorrelation of the increments from an aggregated random walk is
2= V3)/[1 + (2 — V/3)?] = 0.25.

Using the limiting process for large aggregation intervals, we are able to analyse
the relationship between Granger causality among the original variables and the
implied contemporaneous correlation of the aggregated variables. Following
Granger (1988) we exclude ‘true instantaneous causality’ and assume that the
innovation of the VAR process for the disaggregated vector of time series y, are
mutually uncorrelated, that is, Q = E(¢e€)) is diagonal. In the words of Granger
(1988, p. 206).

The true causal lag may be very small but never actually zero. The observed or
apparent instantaneous causality can then be explained by either temporal
aggregation or missing causal variables.

In what follows, we rule out the case that a contemporaneous correlation is due to

missing causal variables and assume that we are able to condition on all relevant
information.
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To define the situation of ‘spurious instantaneous causality’ we write x /4 y if x
is not a (Granger) cause of y, and x + y if there is no causal relationship between x
and y. Furthermore, temporally aggregated variables are indicated by uppercase
letters, no matter whether they are flow or stock variables. To the aggregated
data, we apply the concept of instantaneous causality X = Y (see Section 2 for a
definition).

Definition 1. Let & = [x,,y,,2)] be a m x 1 vector with m=>3. We say that there
is spurious instantaneous causality between X7t and Y7 if we have y <~ x for the
original variables and X = Y (resp. Y = X ) for the aggregated variables.

Of course, it is important to know whether an observed instantaneous causality
between two variables is due to an underlying causal relationship between the
original variables x, and y, or whether it is an artifact due to temporal aggregation.
The latter situation arises if there is spurious instantaneous causality according to
Definition 1. In the following definition, we give sufficient conditions to rule out
spurious instantaneous causality between two aggregated variables, X7 and Y7 (or
X/T and )_’T).Z

Proposition 3 Let & = [x;,31,2)], where z, is a m*-dimensional vector with
m*>=1. Assume that either:

(1) &, is a vector of stationary flow variables, or
(1) &, is a vector of difference stationary flow variables, or
(iii) &, is a vector of difference stationary stock variables.
If
(a) the innovations of the VAR representation for &, have a diagonal covariance
matrix
(b) x & y and
(© % A 24 or
) vz forall j=1,....m"
then, as k — oo, there is no spurious instantaneous causality between Xy and Yr
(resp. Xt and Yr ).

An important special case implied by Propositon 3 is considered in

Corollary 1. For cases (i)—(iii) in Proposition 3, and assuming that there is no
feedback Granger causality among the variables, it follows that, as k — oo, there is
no spurious instantaneous causality among the aggregated variables.

To illustrate the implications of our results in this section, it is useful to

consider some simple examples in which the vector of innovations
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/. . . . . .
€ = [e14, €24, €3, 18 assumed to be white noise with a diagonal covariance
matrix.

Example A Assume the &, = [x;,,,z] is stationary and has a causal structure
given by x; — y, and y, — z,. The VAR(1) process is given by

Xt = €1t

Ve=ax;1+ €y

Zy = byH + €3,
so that x; 4 z; (x; is non Granger causal for z;) and z; /4 y,. From Propostion
3, it follows that p(Xr,Z7|Yr) =0, and that there is no instantaneous
causality between X7 and Zr. Note also that as there is no feedback causality
among the variables at k=1, the above result also follows directly from
Corollary 1.

Example B Assume that a vector of flow variables is generated by a stationary
process given by

X = ay—1 + bz + ey
Ve = €2t
Zr = €3

Applying Granger’s concept of causality, there is no causality between y, and z,.

Further, a simple calculation shows that for the limiting process,
- = .5 —ab

Yr,Zr| Xr) = ————

P ZrlXn) = 5

Thus, a necessary and sufficient condition for the aggregated variables Y7 and
Zr to have zero partial correlations is that either a, b, or both parameters are
equal to zero. This result also follows from Proposition 3, which states that
there is no instantaneous causality if either y; or z; is not Granger causal
for x;.

Example C To illustrate why Proposition 3 does not extend to aggregated
stock variables, consider the stationary process given by

Xt = €1t
V=ax; | + €.

z =by + €3

In this system, x;, — y, and y; — z,. For k>3, the aggregated process becomes
white noise with
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Xr=Ur

Yr=Uyr

Zr = abXr + Usr
For ab # 0, there exists spurious instantancous causality between X7 and Z7, as
there is no Granger causality between x; and z,. Stated another way, the indirect

causal relationship between x; and z, via y, becomes a direct causal link under
aggregation.

4. MONTE CARLO EXPERIMENTS

In this section, the asymptotic implications of Proposition 3 and Corollary 1 are
examined via a simple Monte Carlo experiment. In particular, we begin with the
VAR(1) model

Ax, a 0 07[A%._, €14
Adyt =|{b a O Adyt,l + | €24 4)
AdZ[ 0 b a Adztfl €3¢

where d € {0, 1} and ¢;, is i.i.d. vector of standard normal random variables. For
b # 0, the Granger causal structure of this system is: x, — y, and y, — z,. From
Proposition 3 and Corollary 1, it follows that, as £ — oo, the limiting process has
a partial correlation structure such that E(it r, &3 r|ito,7) = 0 and all other partial
correlations are nonzero, where the i;7(j = 1,2,3) are the residuals from an
estimated VAR(4) model using data generated according to (4) and aggregated
appropriately. Swanson and Granger (1997) suggest a test of the partial
correlation of the residuals from a VAR that can be used to indicate spurious
instantaneous causality. If the test rejects the hypothesis of a zero partial
correlation between #; r and @3 7, then the empirical procedure indicates spurious
instantaneous causality. Proposition 3 gives sufficient conditions to rule out
spurious instantaneous causality as the aggregation interval tends to infinity.
Thus, the rejection rates of the Swanson—Granger test procedure should approach
the nominal size of 0.05 in these cases.’

Empirical level figures for 5% nominal size tests and for various parameter-
izations of the VAR are reported in Table I. The values of the parameter a are
taken from {0,0.2,0.4,0.6,0.8}. Not surprisingly, the magnitude of the parameter
a is crucial when k is small, as a determines the roots of the autoregressive
polynomial in our model. Thus, our asymptotic results may be a poor guide to
finite sample behaviour for small k and |a| close to unity.* The entries in Table I
are based on 10,000 Monte Carlo replications for £ < 100 and 2000 replications
for k =200 and & = 500. All tests are based on 100 observations of appropriately
aggregated data.
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TABLE I
REJECTION RATES OF THE SWANSON—GRANGER TEST PROCEDURE

k a=20 a=02 a=04 a= 0.6 a =038
Case (i): Stationary flow variables
0.10 0.10 0.11 0.11 0.11
5 0.07 0.08 0.16 0.33 0.61
10 0.07 0.07 0.10 0.35 0.95
20 0.07 0.07 0.08 0.19 0.98
50 0.07 0.07 0.07 0.09 0.80
100 0.07 0.07 0.07 0.07 0.47
200 0.07 0.07 0.07 0.07 0.22
500 0.07 0.07 0.07 0.07 0.11
Case (ii): Difference stationary flow variables
2 0.11 0.11 0.11 0.11 0.11
5 0.08 0.10 0.17 0.34 0.61
10 0.07 0.07 0.10 0.31 0.93
20 0.07 0.07 0.07 0.14 0.95
50 0.07 0.07 0.07 0.07 0.53
100 0.07 0.07 0.07 0.07 0.17
200 0.07 0.07 0.07 0.07 0.08
500 0.07 0.07 0.07 0.06 0.06
Case (iii): Difference stationary stock variables
0.10 0.11 0.11 0.11 0.11
5 0.07 0.09 0.16 0.33 0.61
10 0.07 0.07 0.10 0.35 0.95
20 0.07 0.07 0.08 0.19 0.98
50 0.07 0.07 0.07 0.09 0.80
100 0.07 0.07 0.07 0.07 0.47
200 0.07 0.07 0.07 0.07 0.23
500 0.07 0.07 0.07 0.07 0.11

Notes: Entries correspond to the empirical sizes of the Swanson—Granger test for a zero partial
correlation between the residuals of the first and third equation conditional on the residuals of the
second equation. The results for k = 2 to k = 100 are based on 10,000 Monte Carlo replications and,
for k£ = 200 and k = 500, 2000 replications are used. Data are generated according to (4). The
nominal size of the tests is 0.05.

Table I contain results for cases (i)—(iii) in Proposition 3. For small and
moderately sized values of a, the empirical sizes converge quickly to their limiting
value of 0.05 when £ increases. For a = 0.8, however, the empirical sizes tend
very slowly to the limiting value of 0.05. This is due to the fact that, for persistent
processes, the dynamics remain important for short aggregation intervals.
However, if the aggregation interval is as large as £ = 500, then the short-run
dynamics becomes negligible and the asymptotic results are applicable.

5. CONCLUDING REMARKS

In this paper, we examine the asymptotic effects of temporal aggregation on
causal inference by examining the concept of Granger causality in the context of
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aggregated systems, using the framework of Swanson and Granger (1997). We
argue that, as Granger causal findings are aggregation dependent, understanding
the relationship between aggregation and causality is important. In particular, we
consider the relationship between Granger causality among disaggregated
variables and instantaneous causality found among temporally aggregated data.
Conditions are derived that are sufficient to rule out the case where instantaneous
causality of the aggregated data is a pure artifact of temporal aggregation. Our
results are illustrated via three simple examples and via a series of Monte Carlo
experiments which indicate that our asymptotic results are reliable in finite
samples as long as the time series are not characterized by high level of
persistence.

APPENDIX: PROOFS

Proposition 1 The proofs of (i)-(iii) follow immediately from the properties of the
aggregated processes.

For (iv), let
KP¥r = (I + L+ L+ -+ L) C(L)e = D(L)e

where
D(L) =1, +D\L+Dy[* +---

and
min(j,k—1)
Dj = Z Cj,i
i=0

It is convenient to decompose Y; as

K2 Y = ug + - 4w

where
ujo = Djerj + Djrerji + -
From
K2Yr =g+ -+
and

125
K'Yy = gk + o+ o1k

we obtain that
k-1

4
k-E(Yr¥r,,) ZE Ly
j=0

Next, consider
E(uoitty, ) = DoQDj + DyQDy; + - - -
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For a summable sequence C; we have that
lim |Doy| = lim |Cry1 + Crpo +--- + Cox| =0
k—o0 k—o0

and, similarly, lims_. [Dj| = 0 for j>2.
It follows that

Jim E(uoty,y) = DoQDy,
=QC1+ G+ +G)
Similarly,
Jim E(uidy ;) = D1QD}
=In+CAC, +C34 -+ + Cepr)’
and

I}erolo E(“kfl,tu;ﬁl),fk) =+ +C)UACk+ Ch1 + -+ CZt—l)/

Adding these expressions gives the desired result.
It remains to show that

S(5e)e(2e)

j=0 i=j+1

is bounded. Let ¢ = sup|| Y=/_, Cjl| < oo. It follows that
t
o0 J 00 00 J
S(yale( Y a)|<xye
=0 \'i=0 i=jt1 =0 ||i=0
J e
<Y el >l
i=0
which is finite by assumption.

i=j+1
For (v), consider

el > cl

i=j+1

E(uotty, i) = DoQD)y + DyQD i + -+ -
Since
IJLngo Dpipr = khl?c [Cloitst + -+ Cipaje] =0

for p=2 and j=0,1,..., it follows that the autocovariances disappear for p=>2.

Proposition 2 Part (i) follows immediately from the fact that

Yr —Yro1 = W — Ykr—k
k
= Z Ay(kfl)TJri
i=1

is a partial sum process.
For (ii), let §; = 3%, w;and $, = S, 41 4i, where u, is stationary with covariance function
I';. The covariance between S and S, is given by
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E($1S) =T + 2T+ + kL + (k— 1)Tjpq + - + Topy

For 377, j|T;| < oo we have

[E(S155)| <

o0 o0
DY VIES ] VIS
= =

and thus, by letting S;=Yr—Yr; and S, =7Yr, — Yy, it follows that
E(Yr — Yry1)(Yr1 — YT)/ is O(1). A similar result is obtained for higher-order autocovari-
ances.

For (iii), let

k(?r - I_’T—l) = WkT — VkT—k + VkT—1 = VkT—k—1 + * & VkT—k+1 — VkT—2k+1
= Si(L)Ayir + Sk(L)Ayir 1 + -+ - + Si(L)Ayir 411
= SK(L)*Ayir
where
Sp(L)=1+L+ L+ +L!

and

Se(L)? =1+2L 4307 + - + kL 4 (k= DLF 4 - 4 L2
= WO+W1L+W2L+"'+W2k,2L2k_2

is a symmetric filter with triangular weights. The covariance matrix is given by

%-2 %2
k-E(Yr —Yr)(Yr —Yr_) = E(Z WiAykTi> (Z WiAy],cT—i>
=0

=0
2k=2  2k—1-|p|
= > wiwil
p=—2k+2 i=1
where I'), = E(Ay,Ay,’fp). Consider the odd values p = +1,43,45,.... We have

2be—1—|p| k=(lpl+1)/2

WiWiip| = 2 Z i(i+p)
i=1 i=1

and, as k — oo,

. k=l(pt1)/2| , ) 1
im k3 Y 2P —ip) =5+ Ok
im (" —ip) 3 +O(k™)

koo i=1

For even values p = 0,42, 4+4 ... we have

21— , ke
wiwiay = (k= pl/2°+2 > ili+p)
=1 =1
and, thus
el 5 1
lim & 22 —ip) ==+ Ok~
im Z (i* —ip) 3 +O0(k™)

k—00 Py

Using these results yields
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_ _ _ _ 2 20
E(Yr —Yr ) (Yr — Yry) = gkz(Fo +3 T+ T) +o(k)
j=1

= %”szAy(o) + o(k?)

For (iv): The first-order autocovariance matrix is given by
2%k-2  2k—1-|p|

k-E(YT — Yf,l)(f’prl — YT), = Z Z w,-+kw,-+k+‘p‘l"p
p=—2k+2 =

where I', = E(AyAy,_,). For an odd value of p, we have

2k—1—|p| 0
im k7 > Wiy =k Y (k= i)(i+p) + Ok ")
i =1

ko0 i=1 i

1
=+ Ok
3 (k)

It follows that

_ _ _ _ 1 >
E(Yr = ¥ro) (Y — ¥r)' = cR(To + ZF,» +T%) +o(k?)
=

_ gszAy(O) +o(k?)

To simplify the proof for (v), assume that Ay, has a vector MA(g) representation with
g < k. Since k — o0, the proof is valid for ¢ — oo as long as £ grows with a faster rate that
q. The second-order autocovariance matrix is given by

i=

2%-2 2%-2
k-E(Yr — Yr1) (Y142 — Yri1) = E(Z WiAykTi) ( WiAyl/(”zk_,-)
i =0

i=0

|
= Z WiWok—i—|p|+1 (Fp + 1";,)
1

p=1 i=

Now, there exist a constant ¢ < oo such that for all p
Ip|

p
ZWiWZk—if\le = ZI(P —it+1)<cp’
i=1 i=1

Thus, we have that
k_ Ipl k

Z Z wiwg—ipp1|Tp + T < Z 2cp’|T|
p=1 i=1 p=1

k
< 2ck* " plT|
p=1

for p < k. From Zﬁzl p|Tp| < oo, it finally follows that

D R _
lim pE(YT —Yr ) Yr—Yry) =0

k—00

Similarly, it can be shown that the higher-order autocorrelations converge to zero as
well.
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Proposition 3 For convenience, we confine ourselves to a trivariate VAR(p) process.
The proof can easily be generalized to systems with m > 3. First, assume that there is no
causality between x; and y; and condition (c) is satisfied. From Propositons 1 and 2, it
follows that the limiting processes for the cases (i)—(iii) is white noise with a covariance
matrix proportional to the spectral density matrix of the original process. Thus, the limiting
process for case (i), for example, has a representation of the form:

-1
.

<Z Cj) Xr,Yr,Zr) = [Uir,Usr, Usr|
=0

where E(UrUj}) = Q. A similar representation exists for the cases (ii) and (iii). We therefore
confine ourselves to case (i). Since we assume that the MA representation is invertible, there
exists an autoregressive representation with autoregressive polynomial

-1
oo
I—A\L— AL~ = (Zqﬂ)
Jj=0

and thus the limiting process can be written as

(I —A)Xr,Yr,Zr) = [Uir, Uor, Usr]

where
- an 0 ap
A= E Aj = 0 ap axn
Jj=1 0 axpn ax

The zero restrictions in the matrix 4 result from the assumptions on the causal relationship
between the variables. Accordingly, we find that

(1—an)Xr =aiZr+ U r

and
(1—an)YrXr = an¥rZr + YU r

Now, first, note that p(¥r,Zr|Zr) = 0. Furthermore, the system is block recursive so
that E(U, r|Zr) =0 and p(Yr, Ui r|Zr) = 0. 1t follows that p(Xr, ¥r|Zr) = 0. (Note that
the condition (c) is crucial for such a block recursive system.) Second, consider the
condition (¢') y; /4 z instead of condition (c). In this case, the limiting process can be
represented as

Xr an 0 as][Xr Ur
Yr| =10 an as||¥r|+ |l
Zr ay 0 axn]|Zr Usr
This gives
(1 —an)Yr =anZr+ Usy
and

(1 —an)XrYr = anXrZr + XrUsr

Clearly, p(Xr,Zr|Zr) = 0. To show that p(Xr, Uy r|Zr) = 0 it is useful to rearrange the
system according to
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l—an ax 0 Ir Uar
0 1 —as3 as| ?T + U3,T
0 as 1 —an X7 Ul,T

Since the rearranged system is block recursive it follows that E(Uyr|Zr) = 0 and, hence,
p()(]‘7 UQ_]T‘ZT) = O
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NOTES

1. Our asymptotic framework follows closely that used by Tiao (1972). An
alternative asymptotic framework which could in principle, be applied in the
current context is that used in Christiano and Eichenbaum (1987) and Renault
and Szafarz (1991). In particular, it may be assumed that the data are generated
by a stationary continuous process such as

o0 = [ fete = oy

where €(¢) is continuous white noise.

2. Necessary and sufficient conditions for ruling out spurious instantaneous
causality in aggregated time series can, in principle, be derived from the
relationship between the VAR with £ =1 and the limiting VAR (i.e. £k — o0).
However, such conditions are complicated nonlinear functions of the VAR
parameters with £ = 1. If only aggregated data are available with £ > 1, then the
conditions cannot be evaluated in practice.

3. The test suggested by Swanson and Granger (1997) can be used in our context
because they are also interested in inferences based on residuals from a VAR.
Indeed, their framework is the same as ours, except that they offer a method for
uncovering the Wold causal chain— or causal graph, using the terminology of Pearl
(2000) —which characterizes the errors in a VAR. We instead infer the existence of
spurious causation based on the same partial correlations which they examine,
drawing on our results concerning temporal aggregation.
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4. Recall also that the aggregated processes which we construct are VARMA
processes, in general. Thus, lower order VAR approximations may not yield good
estimates of the errors of the process.
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