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Abstract. Large aggregation interval asymptotics are used to investigate the relation
between Granger causality in disaggregated vector autoregressions (VARs) and associated
contemporaneous correlation among innovations of the aggregated system. One of our
main contributions is that we outline various conditions under which the informational
content of error covariance matrices yields insight into the causal structure of the VAR.
Monte Carlo results suggest that our asymptotic findings are applicable even when the
aggregation interval is small, as long as the time series are not characterized by high levels
of persistence.
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1. INTRODUCTION

Temporal aggregation poses many interesting questions which have been explored
in time series analysis and which yet remain to be explored. An early example of
research in this area is Quenouille (1957), where the temporal aggregation of
ARMA processes is studied. Other important contributions include Zellner and
Montmarquette (1971), Stram and Wei (1986), Lütkepohl (1987), Weiss (1984),
and Marcellino (1999), to name but a few. The findings of these studies can be
summarized by quoting Tiao (1999):

So the causality issue is muddled once the data are aggregated. The problem is
that if the data are observed at intervals when the dynamics are not working
properly, then we may not get any kind of causality.

In this paper, we examine the impact of temporal aggregation on Granger
causal relations in vector autoregressions (VARs), by using large aggregation
interval asymptotics to investigate the relation between Granger causality in the
original variables and contemporaneous correlation among the residuals of a
temporally aggregated system. From a theoretical perspective, we outline various
conditions under which the informational content of error covariance matrices
yields insight into the underlying causal structure of the VAR. This allows us to
characterize the extent of information loss due to aggregation.

To illustrate the type of problem which we consider, assume that one is
interested in analysing a system of three aggregated variables X, Y and Z.
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Suppose that we observe contemporaneous correlation between X and Y
conditional on Z. In this case, one may conclude that there is a causal
relationship between X and Y (Dawid, 1979). However, it may be the case that the
corresponding disaggregated variables x and y do not exhibit any causal
relationship, so that the contemporaneous correlation spuriously indicates
causality between the variables. Therefore, it is important to know under which
conditions contemporaneous correlation is merely due to temporal aggregation,
i.e., to quantify the risk of inferring that there is Granger causality when, in fact,
the original variables do not possess any causal linkage. In this paper, asymptotic
theory for large aggregation intervals is used to derive sufficient conditions for
ruling out spurious causality stemming from temporal aggregation.

The rest of the paper is organized as follows. In Section 2, basic concepts are
reviewed. Section 3 summarizes our asymptotic findings and Section 4 contains
the results from a small Monte Carlo investigation. Section 5 concludes. All
proofs are gathered in the Appendix.

2. BASIC DEFINITIONS

Following Granger (1969), we consider a conditional distribution with respect to
two information sets which are available at time t, say I t and Iþ

t ¼ I t [
fxt�s; sP0g, where xt denotes a (possibly causal) variable. In the following, we use
a conditional mean definition of causality. Specifically, we define a variable xt to
be a Granger cause for the variable yt (or x ! y) if

Eðytþ1jI tÞ 6¼ Eðytþ1jIþ
t Þ ð1Þ

Granger (1969) also gives a definition of instantaneous causality; see also Pierce
and Haugh (1977). For a multivariate system with nt ¼ ½xt; yt; z0t�

0, where zt is a m*-
dimensional vector of time series with m�P1, we say that instantaneous causality
x ) y (or by reasons of symmetry y ) x) occurs if

EðytjT tÞ 6¼ EðytjT þ
t Þ ð2Þ

where T t ¼ I t�1 [ fztg and T þ
t ¼ I t�1 [ fzt � xtg. This definition can be seen as a

dynamic version of the causality concept used by Dawid (1979) and Pearl (2000),
among others. For example, if nt is white noise, we find that there is no
instantaneous causality between xt and yt if Eðytjzt; xtÞ ¼ EðytjztÞ. This conditon is
satisfied if xt and yt are conditionally independent given a sufficient set of variables
zt (Dawid, 1979). Furthermore, conditional independence implies a causal
relationship that can be represented by using directed graphs; see Swanson and
Granger (1997) and Pearl (2000) for more details. As already noted by Granger
(1969), an important problem with the definitions is the choice the sampling
interval. For example, variables which are Granger causal according to (1) and
based on daily data, may not be Granger causal based on monthly data, and vice
versa. In the sequel, we examine two types of temporal aggregation; see, for
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example, Lütkepohl (1987). For a flow variable, say yt, observations are
cumulated (or averaged) at k successive time periods to form

�yyt ¼ k�1=2
Xk�1

j¼0

yt�j

where the factor k�1=2 is introduced to obtain a limiting process with finite
variance. The aggregated series, �YYT , results from applying skip-sampling (i.e.
�YYT ¼ �yykT , for T ¼ 1; 2; . . .Þ, where it is assumed that the time series starts at the
beginning of the aggregation period. Stock data are aggregated by directly
applying the skip-sampling scheme to the data, so that YT ¼ ykT for
T ¼ 1; 2; . . ..

3. RESULTS

Assume that n ¼ kN , where N and n are the sample sizes of the aggregated and
disaggregated variables. Since k ! 1 implies n ! 1, it is not necessary to
assume that N also tends to infinity. Our findings are summarized in the following
propositions.1

Proposition 1. (Stationary Variables). Let yt be generated by an m-dimensional
linear process

yt ¼ C0�t þ C1�t�1 þ C2�t�2 þ � � �

where �t is white noise with Eð�t�0tÞ ¼ X, C0 ¼ Im, and yt is one-summable such thatP1
j¼0 jjCjj < 1, where jCjj ¼ maxn;m jCj;ðn;mÞj and Cj;ðn;mÞ denotes the ðn;mÞ-

element of Cj. As k ! 1, the processes for the aggregated vectors YT and �YYT are
such that for stock variables:

(i) limk!1 EðYT Y 0
T Þ ¼

P1
j¼0 CjXC

0
j

(ii) limk!1 EðYT Y 0
TþjÞ ¼ 0 for jP1

For flow variables we have:
(iii) limk!1 Eð�YYT �YY 0

T Þ ¼ 2pfyð0Þ
(iv) limk!1 k � Eð�YYT �YY 0

Tþ1Þ ¼
P1

j¼1

Pj
i¼0 Ci

� �
Xð
P1

i¼jþ1 CiÞ
(v) limk!1 k � Eð�YYT �YY 0

TþjÞ ¼ 0 for jP2, where fyðwÞ denotes the spectral density
matrix of yt at frequency x.

The result of Proposition 1 is intuitive, since it states that, as the sampling interval
increases, short-run dynamics disappear. Furthermore, for moderate k, aggregated
flow variables are well approximated by a vector MA(1) processes. The reason for
this is that, from (iv), we know that the first-order autocorrelation is Oðk�1Þ,
while (v) implies that higher-order autocorrelations are oðk�1Þ.
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Proposition 2. (Difference Stationary Variables). Let Dyt be generated by an m-
dimensional linear process

Dyt ¼ �t þ C1�t�1 þ C2�t�2 þ � � �

where it is assumed that �t is white noise with Eð�t�0tÞ ¼ X,
P1

j¼1 jjCjj < 1 and the
matrix �CC ¼

P1
j¼0 Cj has full rank. As k ! 1, the processes for the aggregated

vectors YT and �YYT are such that for stock varibles:

(i) limk!1
1
kEðYT � YT�1ÞðYT � YT�1Þ0 ¼ 2pfDyð0Þ

(ii) limk!1
1
kEðYT � YT�1ÞðYTþj � YTþj�1Þ0 ¼ 0, for jP1

For flow variables we have:
(iii) limk!1

1
k2 Eð�YYT � �YYT�1Þð�YY 0

T � �YYT�1Þ0 ¼ 4p
3 fDyð0Þ

(iv) limk!1
1
k2 Eð�YYT � �YYT�1Þð�YYTþ1 � �YYT Þ0 ¼ p

3 fDyð0Þ
(v) limk!1

1
k2 Eð�YYT � �YYT�1Þð�YYTþj � �YYTþj�1Þ0 ¼ 0 for jP2, where fDyðxÞ denotes

the spectral density matrix of Dyt at frequency x.

Given Proposition 2, it follows that, as k tends to infinity, the vector of aggregated
flow variables has a vector MA(1) representation. Namely,

k�1ð�YYT � �YYT�1Þ ¼ UT þ ð2�
ffiffiffi
3

p
ÞUT�1 ð3Þ

where

EðUTU 0
T Þ ¼

2p

1þ ð2�
ffiffiffi
3

p
Þ2
fDyð0Þ:

Note that, for the special case where m ¼ 1 (a single time series), our results
correspond to the result of Working (1960), who shows that the first-order
autocorrelation of the increments from an aggregated random walk is
ð2�

ffiffiffi
3

p
Þ=½1þ ð2�

ffiffiffi
3

p
Þ2� ¼ 0:25.

Using the limiting process for large aggregation intervals, we are able to analyse
the relationship between Granger causality among the original variables and the
implied contemporaneous correlation of the aggregated variables. Following
Granger (1988) we exclude ‘true instantaneous causality’ and assume that the
innovation of the VAR process for the disaggregated vector of time series yt are
mutually uncorrelated, that is, X ¼ Eð�t�0tÞ is diagonal. In the words of Granger
(1988, p. 206).

The true causal lag may be very small but never actually zero. The observed or
apparent instantaneous causality can then be explained by either temporal
aggregation or missing causal variables.

In what follows, we rule out the case that a contemporaneous correlation is due to
missing causal variables and assume that we are able to condition on all relevant
information.
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To define the situation of ‘spurious instantaneous causality’ we write x 6! y if x
is not a (Granger) cause of y, and x 6$ y if there is no causal relationship between x
and y. Furthermore, temporally aggregated variables are indicated by uppercase
letters, no matter whether they are flow or stock variables. To the aggregated
data, we apply the concept of instantaneous causality X ) Y (see Section 2 for a
definition).

Definition 1. Let nt ¼ ½xt; yt; z0t�
0 be a m� 1 vector with mP3. We say that there

is spurious instantaneous causality between XT and YT if we have y 6$ x for the
original variables and X ) Y (resp. Y ) X) for the aggregated variables.

Of course, it is important to know whether an observed instantaneous causality
between two variables is due to an underlying causal relationship between the
original variables xt and yt or whether it is an artifact due to temporal aggregation.
The latter situation arises if there is spurious instantaneous causality according to
Definition 1. In the following definition, we give sufficient conditions to rule out
spurious instantaneous causality between two aggregated variables, XT and YT (or
�XXT and �YYT Þ.2

Proposition 3 Let nt ¼ ½xt; yt; z0t�, where zt is a m�-dimensional vector with
m�P1. Assume that either:

(i) nt is a vector of stationary flow variables, or
(ii) nt is a vector of difference stationary flow variables, or
(iii) nt is a vector of difference stationary stock variables.

If
(a) the innovations of the VAR representation for nt have a diagonal covariance

matrix
(b) x 6$ y and
(c) xt 6! zj;t or
(c¢) yt 6! zj;t for all j ¼ 1; . . . ;m�

then, as k ! 1, there is no spurious instantaneous causality between XT and YT
(resp. �XXT and �YYT).

An important special case implied by Propositon 3 is considered in

Corollary 1. For cases (i)–(iii) in Proposition 3, and assuming that there is no
feedback Granger causality among the variables, it follows that, as k ! 1, there is
no spurious instantaneous causality among the aggregated variables.

To illustrate the implications of our results in this section, it is useful to
consider some simple examples in which the vector of innovations
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�t ¼ ½�1;t; �2;t; �3;t�0 is assumed to be white noise with a diagonal covariance
matrix.

Example A Assume the nt ¼ ½xt; yt; zt�0 is stationary and has a causal structure
given by xt ! yt and yt ! zt. The VAR(1) process is given by

xt ¼ �1;t

yt ¼ axt�1 þ �2;t

zt ¼ byt�1 þ �3;t

so that xt 6! zt (xt is non Granger causal for zt) and zt 6! yt. From Propostion
3, it follows that qð�XXT ; �ZZT j�YYT Þ ¼ 0, and that there is no instantaneous
causality between �XXT and �ZZT . Note also that as there is no feedback causality
among the variables at k ¼ 1, the above result also follows directly from
Corollary 1.

Example B Assume that a vector of flow variables is generated by a stationary
process given by

xt ¼ ayt�1 þ bzt�1 þ �1;t

yt ¼ �2;t

zt ¼ �3;t

Applying Granger’s concept of causality, there is no causality between yt and zt.
Further, a simple calculation shows that for the limiting process,

qð�YYT ; �ZZT j�XXT Þ ¼
�ab

a2 þ b2 þ 1

Thus, a necessary and sufficient condition for the aggregated variables �YYT and
�ZZT to have zero partial correlations is that either a, b, or both parameters are
equal to zero. This result also follows from Proposition 3, which states that
there is no instantaneous causality if either yt or zt is not Granger causal
for xt.

Example C To illustrate why Proposition 3 does not extend to aggregated
stock variables, consider the stationary process given by

xt ¼ �1;t

yt ¼ axt�1 þ �2;t

zt ¼ byt�1 þ �3;t

:

In this system, xt ! yt and yt ! zt. For kP3, the aggregated process becomes
white noise with
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XT ¼ U1;T

YT ¼ U2;T

ZT ¼ abXT þ U3;T

For ab 6¼ 0, there exists spurious instantaneous causality between XT and ZT , as
there is no Granger causality between xt and zt. Stated another way, the indirect
causal relationship between xt and zt via yt becomes a direct causal link under
aggregation.

4. MONTE CARLO EXPERIMENTS

In this section, the asymptotic implications of Proposition 3 and Corollary 1 are
examined via a simple Monte Carlo experiment. In particular, we begin with the
VAR(1) model

Ddxt
Ddyt
Ddzt

2
64

3
75 ¼

a 0 0

b a 0

0 b a

2
4

3
5 Ddxt�1

Ddyt�1

Ddzt�1

2
64

3
75þ

�1;t
�2;t
�3;t

2
4

3
5 ð4Þ

where d 2 f0; 1g and �i;t is i.i.d. vector of standard normal random variables. For
b 6¼ 0, the Granger causal structure of this system is: xt ! yt and yt ! zt. From
Proposition 3 and Corollary 1, it follows that, as k ! 1, the limiting process has
a partial correlation structure such that Eðûu1;T ; ûu3;T jûu2;T Þ ¼ 0 and all other partial
correlations are nonzero, where the ûuj;T ðj ¼ 1; 2; 3Þ are the residuals from an
estimated VAR(4) model using data generated according to (4) and aggregated
appropriately. Swanson and Granger (1997) suggest a test of the partial
correlation of the residuals from a VAR that can be used to indicate spurious
instantaneous causality. If the test rejects the hypothesis of a zero partial
correlation between ûu1;T and ûu3;T , then the empirical procedure indicates spurious
instantaneous causality. Proposition 3 gives sufficient conditions to rule out
spurious instantaneous causality as the aggregation interval tends to infinity.
Thus, the rejection rates of the Swanson–Granger test procedure should approach
the nominal size of 0.05 in these cases.3

Empirical level figures for 5% nominal size tests and for various parameter-
izations of the VAR are reported in Table I. The values of the parameter a are
taken from f0; 0:2; 0:4; 0:6; 0:8g: Not surprisingly, the magnitude of the parameter
a is crucial when k is small, as a determines the roots of the autoregressive
polynomial in our model. Thus, our asymptotic results may be a poor guide to
finite sample behaviour for small k and jaj close to unity.4 The entries in Table I
are based on 10,000 Monte Carlo replications for k � 100 and 2000 replications
for k ¼ 200 and k ¼ 500. All tests are based on 100 observations of appropriately
aggregated data.
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Table I contain results for cases (i)–(iii) in Proposition 3. For small and
moderately sized values of a, the empirical sizes converge quickly to their limiting
value of 0.05 when k increases. For a ¼ 0:8, however, the empirical sizes tend
very slowly to the limiting value of 0.05. This is due to the fact that, for persistent
processes, the dynamics remain important for short aggregation intervals.
However, if the aggregation interval is as large as k ¼ 500, then the short-run
dynamics becomes negligible and the asymptotic results are applicable.

5. CONCLUDING REMARKS

In this paper, we examine the asymptotic effects of temporal aggregation on
causal inference by examining the concept of Granger causality in the context of

TABLE I

REJECTION RATES OF THE SWANSON–GRANGER TEST PROCEDURE

k a = 0 a = 0.2 a = 0.4 a = 0.6 a = 0.8

Case (i): Stationary flow variables
2 0.10 0.10 0.11 0.11 0.11
5 0.07 0.08 0.16 0.33 0.61
10 0.07 0.07 0.10 0.35 0.95
20 0.07 0.07 0.08 0.19 0.98
50 0.07 0.07 0.07 0.09 0.80
100 0.07 0.07 0.07 0.07 0.47
200 0.07 0.07 0.07 0.07 0.22
500 0.07 0.07 0.07 0.07 0.11

Case (ii): Difference stationary flow variables
2 0.11 0.11 0.11 0.11 0.11
5 0.08 0.10 0.17 0.34 0.61
10 0.07 0.07 0.10 0.31 0.93
20 0.07 0.07 0.07 0.14 0.95
50 0.07 0.07 0.07 0.07 0.53
100 0.07 0.07 0.07 0.07 0.17
200 0.07 0.07 0.07 0.07 0.08
500 0.07 0.07 0.07 0.06 0.06

Case (iii): Difference stationary stock variables
2 0.10 0.11 0.11 0.11 0.11
5 0.07 0.09 0.16 0.33 0.61
10 0.07 0.07 0.10 0.35 0.95
20 0.07 0.07 0.08 0.19 0.98
50 0.07 0.07 0.07 0.09 0.80
100 0.07 0.07 0.07 0.07 0.47
200 0.07 0.07 0.07 0.07 0.23
500 0.07 0.07 0.07 0.07 0.11

Notes: Entries correspond to the empirical sizes of the Swanson–Granger test for a zero partial
correlation between the residuals of the first and third equation conditional on the residuals of the
second equation. The results for k = 2 to k = 100 are based on 10,000 Monte Carlo replications and,
for k = 200 and k = 500, 2000 replications are used. Data are generated according to (4). The
nominal size of the tests is 0.05.
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aggregated systems, using the framework of Swanson and Granger (1997). We
argue that, as Granger causal findings are aggregation dependent, understanding
the relationship between aggregation and causality is important. In particular, we
consider the relationship between Granger causality among disaggregated
variables and instantaneous causality found among temporally aggregated data.
Conditions are derived that are sufficient to rule out the case where instantaneous
causality of the aggregated data is a pure artifact of temporal aggregation. Our
results are illustrated via three simple examples and via a series of Monte Carlo
experiments which indicate that our asymptotic results are reliable in finite
samples as long as the time series are not characterized by high level of
persistence.

APPENDIX: PROOFS

Proposition 1 The proofs of (i)–(iii) follow immediately from the properties of the

aggregated processes.

For (iv), let

k1=2�YYT ¼ ðIm þ Lþ L2 þ � � � þ Lk�1ÞCðLÞ�t � DðLÞ�t
where

DðLÞ ¼ Im þ D1Lþ D2L2 þ � � �

and

Dj ¼
Xminðj;k�1Þ

i¼0

Cj�i

It is convenient to decompose �YYT as

k1=2�YYT ¼ u0t þ � � � þ uk�1;t

where
ujt ¼ Dj�t�j þ Djþk�t�j�k þ � � �

From

k1=2�YYT ¼ u0t þ � � � þ uk�1;t

and

k1=2�YYTþ1 ¼ u0;tþk þ � � � þ uk�1;tþk

we obtain that

k � Eð�YYT �YY 0
Tþ1Þ ¼

Xk�1

j¼0

Eðujtu0j;tþkÞ

Next, consider

Eðu0tu00;tþkÞ ¼ D0XD0
k þ DkXD0

2k þ � � �
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For a summable sequence Ci we have that

lim
k!1

jD2k j ¼ lim
k!1

jCkþ1 þ Ckþ2 þ � � � þ C2k j ¼ 0

and, similarly, limk!1 jDjk j ¼ 0 for jP2.
It follows that

lim
k!1

Eðu0tu00;tþkÞ ¼ D0XD0
k

¼ XðC1 þ C2 þ � � � þ CkÞ0

Similarly,

lim
k!1

Eðu1tu01;tþkÞ ¼ D1XD0
kþ1

¼ ðIm þ C1ÞXðC2 þ C3 þ � � � þ Ckþ1Þ0

and

lim
k!1

Eðuk�1;tu0k�1;t�kÞ ¼ ðC1 þ � � � þ Ct�1ÞXðCk þ Ckþ1 þ � � � þ C2t�1Þ0

Adding these expressions gives the desired result.
It remains to show that X1

j¼0

Xj
i¼0

Ci

 !
X

X1
i¼jþ1

Ci

 !0

is bounded. Let �cc ¼ sup
t
k
Pt

j¼0 Cjk < 1. It follows that

X1
j¼0

Xj
i¼0

Ci

 !
X

X1
i¼jþ1

C0
i

 !�����
�����O

X1
j¼0

Xj
i¼0

Ci

�����
����� Xk k

X1
i¼jþ1

Cik k

O
Xj
i¼0

�cc Xk k
X1
i¼jþ1

j Cik k

which is finite by assumption.
For (v), consider

Eðu0tu00;t�pkÞ ¼ D0XD0
pk þ DkXDðpþ1Þk þ � � �

Since

lim
k!1

DðpþjÞk ¼ lim
k!1

Cðpþj�1Þkþ1 þ � � � þ CðpþjÞk
� �

¼ 0

for pP2 and j ¼ 0; 1; . . . ; it follows that the autocovariances disappear for pP2.

Proposition 2 Part (i) follows immediately from the fact that

YT � YT�1 ¼ ykT � ykT�k

¼
Xk
i¼1

Dyðk�1ÞTþi

is a partial sum process.
For (ii), let S1 ¼

Pk
i¼1 ui and S2 ¼

P2k
i¼kþ1 ui, where ut is stationary with covariance function

Cj. The covariance between S1 and S2 is given by
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EðS1S02Þ ¼ C1 þ 2C2 þ � � � þ kCk þ ðk � 1ÞCkþ1 þ � � � þ C2k�1

For
P1

j¼1 jjCjj < 1 we have

jEðS1S02Þj <
X1
j¼1

jCj

�����
����� �

X1
j¼1

j Cj
�� �� < 1

and thus, by letting S1 ¼ YT � YT�1 and S2 ¼ YTþ1 � YT , it follows that
EðYT � YTþ1ÞðYTþ1 � YT Þ0 is Oð1Þ. A similar result is obtained for higher-order autocovari-

ances.
For (iii), let

kð�YYT � �YYT�1Þ ¼ ykT � ykT�k þ ykT�1 � ykT�k�1 þ � � � þ ykT�kþ1 � ykT�2kþ1

¼ SkðLÞDykT þ SkðLÞDykT�1 þ � � � þ SkðLÞDykT�kþ1

¼ SkðLÞ2DykT
where

SkðLÞ ¼ 1þ Lþ L2 þ � � � þ Lk�1

and

SkðLÞ2 ¼ 1þ 2Lþ 3L2 þ � � � þ kLk�1 þ ðk � 1ÞLk þ � � � þ L2k�2

¼ w0 þ w1Lþ w2Lþ � � � þ w2k�2L2k�2

is a symmetric filter with triangular weights. The covariance matrix is given by

k � Eð�YYT � �YYT�1Þð�YYT � �YYT�1Þ0 ¼ E
X2k�2

i¼0

wiDykT�i

 ! X2k�2

i¼0

wiDy0kT�i

 !

¼
X2k�2

p¼�2kþ2

X2k�1�jpj

i¼1

wiwiþjpjCp

where Cp ¼ EðDytDy0t�pÞ. Consider the odd values p ¼ �1;�3;�5; . . .. We have

X2k�1�jpj

i¼1

wiwiþjpj ¼ 2
Xk�ðjpjþ1Þ=2

i¼1

iðiþ pÞ

and, as k ! 1,

lim
k!1

k�3
Xk�jðpþ1Þ=2j

i¼1

2ði2 � ipÞ ¼ 2

3
þ Oðk�1Þ

For even values p ¼ 0;�2;�4; . . . we have

X2k�1�jpj

i¼1

wiwiþjpj ¼ ðk � jpj=2Þ2 þ 2
Xk�jpj=2�1

i¼1

iðiþ pÞ

and, thus

lim
k!1

k�3
Xk�jðpþ1Þ=2j

i¼1

2ði2 � ipÞ ¼ 2

3
þ Oðk�1Þ

Using these results yields

661TEMPORAL AGGREGATION AND SPURIOUS CAUSALITY

� Blackwell Publishers Ltd 2002



Eð�YYT � �YYT�1Þð�YYT � �YYT�1Þ0 ¼
2

3
k2ðC0 þ

X1
j¼1

Cj þ C0
jÞ þ oðk2Þ

¼ 4p
3
k2fDyð0Þ þ oðk2Þ

For (iv): The first-order autocovariance matrix is given by

k � Eð�YYT � �YYT�1Þð�YYTþ1 � �YYT Þ0 ¼
X2k�2

p¼�2kþ2

X2k�1�jpj

i¼1

wiþkwiþkþjpjCp

where Cp ¼ EðDytDy0t�pÞ. For an odd value of p, we have

lim
k!1

k�3
X2k�1�jpj

i¼1

wiþkwiþkþjpj ¼ k�3
X1
i¼1

ðk � iÞðiþ pÞ þ Oðk�1Þ

¼ 1

6
þ Oðk�1Þ

It follows that

Eð�YYT � �YYT�1Þð�YYTþ1 � �YYT Þ0 ¼
1

6
k2ðC0 þ

X1
j¼1

Cj þ C0
jÞ þ oðk2Þ

¼ p
3
k2fDyð0Þ þ oðk2Þ

To simplify the proof for (v), assume that Dyt has a vector MA(q) representation with
q < k. Since k ! 1, the proof is valid for q! 1 as long as k grows with a faster rate that
q. The second-order autocovariance matrix is given by

k � Eð�YYT � �YYT�1Þð�YYTþ2 � �YYTþ1Þ0 ¼ E
X2k�2

i¼0

wiDykT�i

 ! X2k�2

i¼0

wiDy0kTþ2k�i

 !

¼
Xk
p¼1

Xjpj
i¼1

wiw2k�i�jpjþ1ðCp þ C0
pÞ

Now, there exist a constant c < 1 such that for all pXjpj
i¼1

wiw2k�i�jpjþ1 ¼
Xp
i¼1

iðp � iþ 1Þ < cp3

Thus, we have that Xk
p¼1

Xjpj
i¼1

wiw2k�i�jpjþ1jCp þ C0
pj <

Xk
p¼1

2cp3jCpj

< 2ck2
Xk
p¼1

pjCpj

for p < k. From
Pk

p¼1 pjCpj < 1, it finally follows that

lim
k!1

1

k2
Eð�YYT � �YYT�1Þð�YYTþ2 � YTþ1Þ0 ¼ 0

Similarly, it can be shown that the higher-order autocorrelations converge to zero as

well.
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Proposition 3 For convenience, we confine ourselves to a trivariate VAR(p) process.
The proof can easily be generalized to systems with m > 3. First, assume that there is no
causality between xt and yt and condition (c) is satisfied. From Propositons 1 and 2, it
follows that the limiting processes for the cases (i)–(iii) is white noise with a covariance

matrix proportional to the spectral density matrix of the original process. Thus, the limiting
process for case (i), for example, has a representation of the form:

X1
j¼0

Cj

 !�1

½�XXT ; �YYT ; �ZZT �0 ¼ ½U1;T ;U2;T ;U3;T �0

where EðUTU 0
T Þ ¼ X. A similar representation exists for the cases (ii) and (iii). We therefore

confine ourselves to case (i). Since we assume that the MA representation is invertible, there
exists an autoregressive representation with autoregressive polynomial

I � A1L� A2L2 � � � � ¼
X1
j¼0

CjLj
 !�1

and thus the limiting process can be written as

ðI � �AAÞ½�XXT ; �YYT ; �ZZT �0 ¼ ½U1;T ;U2;T ;U3;T �0

where

�AA ¼
X1
j¼1

Aj ¼
�aa11 0 �aa13
0 �aa22 �aa23
0 �aa32 �aa33

2
4

3
5

The zero restrictions in the matrix �AA result from the assumptions on the causal relationship

between the variables. Accordingly, we find that

ð1� �aa11Þ�XXT ¼ �aa13�ZZT þ U1;T

and

ð1� �aa11Þ�YYT �XXT ¼ �aa13�YYT �ZZT þ �YYTU1;T

Now, first, note that qð�YYT ; �ZZT j�ZZT Þ ¼ 0. Furthermore, the system is block recursive so
that EðU1;T jZT Þ ¼ 0 and qð�YYT ;U1;T j�ZZT Þ ¼ 0. It follows that qð�XXT ; �YYT j�ZZT Þ ¼ 0. (Note that

the condition (c) is crucial for such a block recursive system.) Second, consider the
condition (c0) yt 6! zt instead of condition (c). In this case, the limiting process can be
represented as

�XXT
�YYT
�ZZT

2
4

3
5 ¼

�aa11 0 �aa13
0 �aa22 �aa23
�aa31 0 �aa33

2
4

3
5 �XXT

�YYT
�ZZT

2
4

3
5þ

U1;T

U2;T

U3;T

2
4

3
5

This gives

ð1� �aa22Þ�YYT ¼ �aa23�ZZT þ U2;T

and

ð1� �aa22Þ�XXT �YYT ¼ �aa23 �XXT �ZZT þ �XXTU2;T

Clearly, qð�XXT ; �ZZT j�ZZT Þ ¼ 0. To show that qð�XXT ;U2;T j�ZZT Þ ¼ 0 it is useful to rearrange the
system according to
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1� �aa22 �aa23 0
0 1� �aa33 �aa31
0 �aa13 1� �aa11

2
4

3
5 �YYT

�ZZT
�XXT

2
4

3
5þ

U2;T

U3;T

U1;T

2
4

3
5

Since the rearranged system is block recursive it follows that EðU2;T j�ZZT Þ ¼ 0 and, hence,
qð�XXT ;U2;T j�ZZT Þ ¼ 0.
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NOTES

1. Our asymptotic framework follows closely that used by Tiao (1972). An
alternative asymptotic framework which could in principle, be applied in the
current context is that used in Christiano and Eichenbaum (1987) and Renault
and Szafarz (1991). In particular, it may be assumed that the data are generated
by a stationary continuous process such as

yðtÞ ¼
Z
f ðsÞ�ðt � sÞds

where �ðtÞ is continuous white noise.
2. Necessary and sufficient conditions for ruling out spurious instantaneous
causality in aggregated time series can, in principle, be derived from the
relationship between the VAR with k ¼ 1 and the limiting VAR (i.e. k ! 1).
However, such conditions are complicated nonlinear functions of the VAR
parameters with k ¼ 1. If only aggregated data are available with k > 1, then the
conditions cannot be evaluated in practice.
3. The test suggested by Swanson and Granger (1997) can be used in our context
because they are also interested in inferences based on residuals from a VAR.
Indeed, their framework is the same as ours, except that they offer a method for
uncovering the Wold causal chain– or causal graph, using the terminology of Pearl
(2000) –which characterizes the errors in a VAR. We instead infer the existence of
spurious causation based on the same partial correlations which they examine,
drawing on our results concerning temporal aggregation.
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4. Recall also that the aggregated processes which we construct are VARMA
processes, in general. Thus, lower order VAR approximations may not yield good
estimates of the errors of the process.
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